@integralsbot \int_0^\infty \left(\sqrt{1+x^4}-x^2\right) \,dx=\frac{\Gamma^2\left( \frac14\right)}{6 \sqrt{\pi}}

   Today we will show the following result that appears in this post from @integralsbot



\int_0^\infty \left(\sqrt{1+x^4}-x^2\right) \,dx=\frac{\Gamma^2\left( \frac14\right)}{6 \sqrt{\pi}}




Let

\sqrt{1+x^4}-x^2&=\sqrt{u}

Then:

\begin{aligned}
\sqrt{1+x^4}-x^2&=\sqrt{u}\\
\sqrt{1+x^4}&=x^2+\sqrt{u}\\
1+x^4&=x^4+2x^2\sqrt{u}+u\\
1-u&=2x^2\sqrt{u}\\
x^2&=\frac{1-u}{2\sqrt{u}}\\
x&=\frac{1}{\sqrt{2}}(1-u)^{1/2}u^{-1/4}
\end{aligned}

And

dx=\frac{1}{\sqrt{2}}\left(\frac12(1-u)^{-1/2}x^{-1/4}+\frac14(1-u)^{1/2}x^{-5/4} \right)(-du)


        We then get:

\begin{aligned}
\int_0^\infty \left(\sqrt{1+x^4}-x^2\right) \,dx&=\frac{1}{2\sqrt{2}}\int_0^1x^{1/4}(1-x)^{-1/2}\,dx+\frac{1}{4\sqrt{2}}\int_0^1x^{-3/4}(1-x)^{1/2}\,dx\\
&=\frac{1}{2\sqrt{2}}\operatorname{B}\left(\frac54,\frac12 \right)+\frac{1}{4\sqrt{2}}\operatorname{B} \left(\frac14 ,\frac32 \right)\\
&=\frac{1}{2\sqrt{2}}\frac{\Gamma\left(\frac54\right)\Gamma\left(\frac12\right)}{\Gamma\left(\frac74\right)}+\frac{1}{4\sqrt{2}}\frac{\Gamma\left(\frac14\right)\Gamma\left(\frac32\right)}{\Gamma\left(\frac74\right)}\\
&=\frac{1}{2\sqrt{2}}\frac{\frac14\Gamma\left(\frac14\right)\sqrt{\pi}}{\frac34\Gamma\left(\frac34\right)}+\frac{1}{4\sqrt{2}}\frac{\Gamma\left(\frac14\right)\frac12\Gamma\left(\frac12\right)}{\frac34\Gamma\left(\frac34\right)}\\
&=\frac{\sqrt{\pi}}{6\sqrt{2}}\frac{\Gamma\left(\frac14\right)}{\Gamma\left(\frac34\right)}+\frac{\sqrt{\pi}}{6\sqrt{2}}\frac{\Gamma\left(\frac14\right)}{\Gamma\left(\frac34\right)}\\
&=\frac{2\sqrt{\pi}}{6\sqrt{2}}\frac{\Gamma\left(\frac14\right)}{\frac{\sqrt{2}\pi}{\Gamma\left(\frac14\right)}}\\
&=\frac{\Gamma^2\left( \frac14\right)}{6 \sqrt{\pi}} \qquad \blacksquare
\end{aligned}


By the reflection formula

\Gamma\left(x\right)\Gamma\left(1-x\right)=\frac{\pi}{\sin(\pi x)}

Letting x=\frac14 we obtain that

\Gamma\left(\frac34\right)=\frac{\pi \sqrt{2}}{\Gamma\left(\frac14\right)}

By the functional equation of the Gamma function

\Gamma\left(x+1\right)=x\Gamma\left(x\right)

We obtain for instance that

\Gamma\left(\frac74\right)=\frac34\Gamma\left(\frac34\right)

Comments

Popular posts from this blog

HARD INTEGRAL - PART II