\int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx=\frac{19}{24}-\frac{23}{24}\ln 2-\frac{\ln A}{2}

In today´s post We will compute these wonderfull integrals:



\int_0^\infty\frac{x \ln(1+x^2)}{\sinh \pi x}\,dx=\frac{\ln 2}{3} - \log \pi - \frac{1}{2} + 6 \ln A


\int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx=\frac{19}{24}-\frac{23}{24}\ln 2-\frac{\ln A}{2}




From last post we know


\int_0^\infty\frac{x \ln(1+x^2)}{e^{\pi x}-1}\,dx =-2\zeta^{\prime}(-1)+\frac{  2 }{3}\ln 2-\frac34(1)

\int_0^\infty\frac{x \ln(1+x^2)}{e^{2\pi x}-1}\,dx=\zeta^{\prime}(-1)-\frac{3}{4}+\frac12 \ln 2 \pi(2)

\int_0^\infty\frac{x \ln(1+x^2)}{e^{4\pi x}-1}\,dx=\frac{\ln \pi}{4}-\frac{36}{48}+\frac{35}
{48} \ln2+\frac14 \zeta^{\prime}(-1)(3)


Lemma 1

\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2}{e^{2 \pi x}-1}

Proof:

\begin{aligned}
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2}{e^{2 \pi x}-1}\\
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2e^{-\pi x}}{e^{ \pi x}-e^{-\pi x}}\\
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{e^{-\pi x}}{\sinh \pi x}\\
&\frac{e^{-\pi x}+1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}\\
&\frac{1}{\sinh \pi x}=\frac{2}{(e^{\pi x}-1)(e^{-\pi x}+1)}\\
&\frac{1}{\sinh \pi x}=\frac{1}{\sinh \pi x} \qquad \blacksquare\\
\end{aligned}


Therefore, from Lemma 1 and from (1) and (2) we obtain


\begin{aligned}
\int_0^\infty\frac{x \ln(1+x^2)}{\sinh \pi x}\,dx&=2\int_0^\infty\frac{x \ln(1+x^2)}{e^{\pi x}-1}\,dx-2\int_0^\infty\frac{x \ln(1+x^2)}{e^{2\pi x}-1}\,dx
\\&=2\left(-2 \zeta^{\prime}(-1)+\frac{2}{3} \ln 2-\frac{3}{4}-\zeta^{\prime}(-1)-\ln \sqrt{2 \pi}+\frac{3}{4}\right)\\
&=2\left(-3 \zeta^{\prime}(-1)+\frac{2}{3}\ln 2-\frac12 \ln 2-\frac12 \ln \pi\right)\\
&=-6 \zeta^{\prime}(-1)+\frac{4}{3}\ln 2- \ln 2- \ln \pi\\
&=-6 \zeta^{\prime}(-1)+\frac{\ln 2}{3}- \ln \pi\\
&=-6 \left(\frac{1}{12}-\ln A \right)+\frac{\ln 2}{3}- \ln \pi\\
&=-\frac{\ln e}{2}+\ln A^6 +\frac{\ln 2}{3}- \ln \pi\\
&=\ln \, \frac{\sqrt[3]{2}\, A^6}{\pi \sqrt{e}} \qquad \blacksquare
\end{aligned}


Lemma 2

\frac{1}{e^{2\pi x}+1}=\frac{1}{e^{2\pi x}-1}-\frac{2}{e^{4\pi x}-1}



Therefore from Lemma 2 and (2) and (3) we obtain


\begin{aligned}
\int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx&=\int_0^\infty\frac{x \ln(1+x^2)}{e^{2\pi x}-1}\,dx-2\int_0^\infty\frac{x \ln(1+x^2)}{e^{4\pi x}-1}\,dx\\
&=\zeta^{\prime}(-1)-\frac{3}{4}+\frac12 \ln 2 \pi-2\left( \frac{\ln \pi}{4}-\frac{36}{48}+\frac{35}{48} \ln2+\frac14 \zeta^{\prime}(-1)\right)\\
&=\frac12\zeta^{\prime}(-1)-\frac{23}{24}\ln 2+\frac{18}{24}\\
&=\frac12\left(\frac{1}{12}-\ln A \right)-\frac{23}{24}\ln 2+\frac{18}{24}\\
&=\frac{19}{24}-\frac{23}{24}\ln 2-\frac{\ln A}{2} \qquad \blacksquare
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II