FOURIER EXPANSION HURWITZ ZETA FUNCTION

        The goal of today´s post is to prove the following Fourier expansion for the Hurwitz zeta Function


\zeta(s,a)=\frac{2\Gamma(1-s) }{(2 \pi)^{1-s}} \left(\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{1-s}}\right)



Recall the Series definition of the Hurwitz Zeta function

\zeta(s,a)=\sum_{n=0}^\infty \frac{1}{(n+a)^s}(1)

valid for \sigma>1. Where s=\sigma+i t


Integral representation of the Hurwitz zeta function


\zeta(s,a)=\frac{1}{\Gamma(s)}\int_0^\infty \frac{e^{-ax}x^{s-1}}{1-e^{-x}}\,dx(2)


To prove (2), we start from the Gamma function


\begin{aligned}
&\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx\\
&\Gamma(s)=(n+a)^s\int_0^\infty e^{-x(n+a)}x^{s-1}\,dx & (x \to (n+a)x)\\
&\frac{\Gamma(s)}{(n+a)^s}=\int_0^\infty e^{-x(n+a)}x^{s-1}\,dx\\
&\sum_{n=0}^\infty\frac{\Gamma(s)}{(n+a)^s}=\sum_{n=0}^\infty\int_0^\infty e^{-x(n+a)}x^{s-1}\,dx\\
&\Gamma(s)\zeta(s,a)=\int_0^\infty e^{-ax}\left(\sum_{n=0}^\infty e^{-nx}\right)x^{s-1}\,dx\\
&\Gamma(s)\zeta(s,a)=\int_0^\infty \frac{e^{-ax}x^{s-1}}{1-e^{-x}}\,dx\\
&\zeta(s,a)=\frac{1}{\Gamma(s)}\int_0^\infty \frac{e^{-ax}x^{s-1}}{1-e^{-x}}\,dx \qquad \blacksquare\\
 \end{aligned}


Contour integral representation of the Hurwitz zeta function

We now derive a contour integral representation for the Hurwitz Zeta function. The contour is the classic Hankel contour which is a loop around the negative real axis. It starts at −∞, encircles the origin once in the positive direction without enclosing any of the points ±2Ď€i,±4Ď€i,⋯ and returns to −∞ acording to the picture below



For 0<a\leq 1 the function defined by the contour integral


\operatorname{I}(s,a)=\frac{1}{2 \pi i}\int_{H}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz(3)


is entire. For \sigma>1 we have:


\zeta(s,a)=\Gamma(1-s)\operatorname{I}(s,a)(4)

Proof:


Over the bottom edge of the contour Letting z=xe^{-i \pi}


\begin{aligned}
I_{C_L}&=\frac{1}{2 \pi i}\int_{C_L}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz\\
&=\frac{1}{2 \pi i}\int_R^\epsilon \frac{(xe^{-i \pi})^{s-1}e^{axe^{-i \pi}}}{1-e^{xe^{-i \pi}}}\,e^{-i \pi}dx\\
&=\frac{-e^{-i \pi s}}{2 \pi i}\int_\epsilon^R \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx
 \end{aligned}


On the upper edge we have z=xe^{i \pi}


\begin{aligned}
I_{C_U}&=\frac{1}{2 \pi i}\int_{C_U}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz\\
&=\frac{1}{2 \pi i}\int_\epsilon^R \frac{(xe^{i \pi})^{s-1}e^{axe^{i \pi}}}{1-e^{xe^{i \pi}}}\,e^{i \pi}dx\\
&=\frac{e^{i \pi s}}{2 \pi i}\int_\epsilon^R \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx
 \end{aligned}

Letting z =\epsilon e^{i \theta}



\begin{aligned}
I_{C_\epsilon}&=\int_{C_\epsilon}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz\\
&=\int_{-\pi}^\pi \frac{\left( \epsilon e^{i \theta}\right)^{s-1}e^{a\epsilon e^{i \theta}}}{1-e^{\epsilon e^{i \theta}}}\,i \epsilon e^{i \theta}d \theta\\
&=i \epsilon^s  \int_{-\pi}^\pi \frac{e^{is \theta}e^{a\epsilon\left(\cos(\theta)+i \sin(\theta) \right) }}{1-e^{\epsilon e^{i \theta}}}\,d \theta\\
&=i \epsilon^s  \int_{-\pi}^\pi \frac{e^{is \theta}e^{a\epsilon\left(\cos(\theta)+i \sin(\theta) \right) }}{1-e^{\epsilon e^{i \theta}}}\frac{\epsilon e^{i \theta}}{\epsilon e^{i \theta}}d \theta\\
&=i \epsilon^s  \int_{-\pi}^\pi \frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}\frac{e^{is \theta}e^{a\epsilon\left(\cos(\theta)+i \sin(\theta) \right) }}{\epsilon e^{i \theta}}d \theta\\
& \leq \Bigg|i \epsilon^s  \int_{-\pi}^\pi \frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}\frac{e^{is \theta}e^{a\epsilon\left(\cos(\theta)+i \sin(\theta) \right) }}{\epsilon e^{i \theta}}d \theta  \Bigg|\\
& \leq \epsilon^s \int_{-\pi}^\pi \Bigg|\frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}\Bigg| \, \Bigg|\frac{e^{is \theta}e^{a\epsilon\left(\cos(\theta)+i \sin(\theta) \right) }}{\epsilon e^{i \theta}}\Bigg|\,d \theta\\
& \leq \epsilon^{s-1} \int_{-\pi}^\pi \Bigg|\frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}\Bigg| \, e^{a\epsilon \cos(\theta)}\,d \theta\\
& \leq \epsilon^{s-1} C \int_{-\pi}^\pi  e^{a\epsilon \cos(\theta)}\,d \theta\\
& \text{letting} \,\, \epsilon \to 0 \\
I_{C_\epsilon} &\leq \lim_{\epsilon \to 0}\epsilon^{s-1} C \int_{-\pi}^\pi  e^{a\epsilon \cos(\theta)}\,d \theta\\
&= \lim_{\epsilon \to 0}\epsilon^{s-1} C \int_{-\pi}^\pi  \lim_{\epsilon \to 0}  e^{a\epsilon \cos(\theta)}\,d \theta\\
&= \lim_{\epsilon \to 0}\epsilon^{s-1}  2 \pi C \to 0 \qquad \text{for }\operatorname{Re}(s)>1
 \end{aligned}


To show the boundedness of    \frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}   we proceed as following


\begin{aligned}
\frac{\epsilon e^{i \theta}}{1-e^{\epsilon e^{i \theta}}}&=\frac{z}{1-e^{z}}\\
&=\frac{z}{1-\left(\sum_{n=0}^\infty \frac{z^n}{n!} \right)}\\
&=\frac{z}{1-\left(1+z+\frac{z^2}{2!}+\cdots \right)}\\
&=-\frac{z}{z+\frac{z^2}{2!}+\cdots }\\
&=-\frac{z}{z}\cdot\frac{1}{1+\frac{z}{2!}+\cdots }\\
&=-\frac{1}{1+\frac{z}{2!}+\cdots }\\
&=-\frac{1}{1+\frac{\epsilon e^{i \theta}}{2!}+\cdots }\\
& \text{as} \,\,\epsilon \to 0 \,\,\text{the limit tends to}\,\,-1
 \end{aligned}



Taking limit of R \to \infty and \epsilon \to 0 we obtain



\begin{aligned}
\frac{1}{2 \pi i}\int_{H}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz&=\frac{e^{i \pi s}}{2 \pi i}\int_0^\infty \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx-\frac{e^{-i \pi s}}{2 \pi i}\int_0^\infty \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx\\
&= \frac{\sin(\pi s)}{\pi}\int_0^\infty \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx\\
&=\frac{\sin(\pi s)}{\pi}\Gamma(s)\zeta(s,a)\\
&=\frac{\zeta(s,a)}{\Gamma(1-s)}\\
 \end{aligned}

Or

\zeta(s,a)=\frac{\Gamma(1-s)}{2 \pi i}\int_{H}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz


\zeta(s,a)=\Gamma(1-s)\operatorname{I}(s,a)



       

         We can modify the above contour so that it encloses the poles of the integrand at \pm 2\pi i, \pm 4\pi i , \cdots , \pm 2N\pi i. And the integral can be evaluated as the sum of the residues leading us to the following series expansion:


\zeta(s,a)=\frac{2\Gamma(1-s) }{(2 \pi)^{1-s}} \left(\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{1-s}}\right)

(5)



for \sigma<0 and 0<a\leq1


Proof:

Let f(z)=\frac{z^{s-1}e^{az}}{1-e^{z}} around a closed contour according to the picture below:


The radius of the circle is given by  R=(2N+1)\pi.

The integrand has simple poles at \pm 2\pi i, \pm 4\pi i , \cdots , \pm 2N\pi i. Hence, by the residues theorem we have:



\frac{1}{2 \pi i}\int_{C}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz=\frac{1}{2 \pi i}\int_{C_R}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz+\frac{1}{2 \pi i}\int_{H}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz=\sum_{n=1}^N \left(R_n+R_n^\prime \right)(6)



Where R_n+R_n^\prime are the residues over the negative and positive integers respectively.

Lets start by calculating the residues. We will use the following expression in the calculation


\begin{aligned}
\operatorname{Res}_{z=2\pi i n}F(z)&=\lim_{z \to 2\pi i n}(z-2 \pi i n)\frac{f(z)}{g(z)}\\
&=\lim_{z \to 2\pi i n}\frac{f(z)}{\frac{g(z)-g(2 \pi i n)}{z - 2\pi i n}}\\
&=\frac{f(2 \pi i n)}{g^\prime(2 \pi i n)}\\
\end{aligned}

For positive n we have


\begin{aligned}
\lim_{z \to 2 \pi i n}(z-2 \pi i n)\frac{z^{s-1}e^{az}}{1-e^{z}}&=\lim_{z \to 2 \pi i n}\frac{z^{s-1}e^{az}}{-e^{z}}\\
&=\frac{(2 \pi i n)^{s-1}e^{2 a \pi i n}}{-e^{2 \pi i n}}\\
&=-(2 \pi  ne^{ \frac{i\pi}{2} })^{s-1}e^{2 a \pi i n}\\
&=-\frac{e^{\frac{i\pi s}{2} }}{i}(2 \pi  n)^{s-1}e^{2 a \pi i n}\\
&=i(2 \pi  n)^{s-1}e^{\frac{i \pi s }{2}+2 a \pi i n}\\
\end{aligned}

For negative n


\begin{aligned}
\lim_{z \to -2 \pi i n}(z+2 \pi i n)\frac{z^{s-1}e^{az}}{1-e^{z}}&=\lim_{z \to -2 \pi i n}\frac{z^{s-1}e^{az}}{-e^{z}}\\
&=\frac{(-2 \pi i n)^{s-1}e^{-2 a \pi i n}}{-e^{-2 \pi i n}}\\
&=-i(2 \pi  n)^{s-1}e^{-\frac{i\pi s}{2} }e^{-2 a \pi i n}\\
&=-i(2 \pi  n)^{s-1}e^{-\frac{i\pi s}{2}-2 a \pi i n}\\
\end{aligned}


Hence letting N \to \infty, by (6) we have that


\begin{aligned}
\lim_{N \to \infty}\sum_{n=1}^N \left(R_n+R_n^\prime \right)
&=\lim_{N \to \infty}\sum_{n=1}^N \left(i(2 \pi  n)^{s-1}e^{\frac{i \pi }{2}+2 a \pi i n}-i(2 \pi  n)^{s-1}e^{-\frac{i\pi}{2}-2 a \pi i n}\right)\\
&=\frac{2}{(2 \pi)^{1-s}}\sum_{n=1}^\infty \frac{\sin\left(\frac{\pi s}{2}+2a \pi n \right)}{n^{1-s}}\\
&=\frac{2 \sin\left(\frac{\pi s}{2}\right)}{(2 \pi)^{1-s}}\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{1-s}}+\frac{2 \cos\left(\frac{\pi s}{2}\right)}{(2 \pi)^{1-s}}\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{1-s}} \qquad \blacksquare\\
\end{aligned}



Now lets show that the integral over the big arc doesn´t contribute to the integral.



\begin{aligned}
I_{C_R}&=\int_{C_R}\frac{ z^{s-1}e^{az}}{1-e^z}\,dz\\
&=\int_\pi^{-\pi} \frac{(Re^{i \theta})^{s-1}e^{aRe^{i \theta}}}{1-e^{Re^{i \theta}}}\,i Re^{i \theta} d \theta\\
&=-iR^{s}\int_{-\pi}^\pi \frac{e^{i s \theta}e^{aR\cos(\theta)+iaR\sin(\theta)}}{1-e^{R e^{i \theta}}}\,d\theta\\
& \leq \Bigg|-iR^{s}\int_{-\pi}^\pi \frac{e^{i s \theta}e^{aR\cos(\theta)+iaR\sin(\theta)}}{1-e^{R e^{i \theta}}}\,d\theta \Bigg|\\
& \leq R^{\operatorname{Re}(s)} \int_{-\pi}^\pi \Bigg| \frac{e^{aR\cos(\theta)+iaR\sin(\theta)}}{1-e^{R e^{i \theta}}}\Bigg|\,\Bigg|e^{i (\operatorname{Re}(s)+i\operatorname{Im}(s)) \theta}\Bigg|\,d \theta\\
& \leq R^{\operatorname{Re}(s)}K \int_{-\pi}^\pi \,e^{-\operatorname{Im}(s)) \theta}\,d \theta\\
& \text{if} \operatorname{Re}(s)<0 \,\,\text{as} \, R \to \infty\,\, \text{the integral vanishes!}
\end{aligned}


For 0<a\leq 1 we have


\begin{aligned}
\frac{ e^{az}}{1-e^z}&=\frac{ e^{(a-1)z}}{e^{-z}-1}\\
&=-\frac{ e^{(a-1)z}}{1-e^{-z}}\\
& \text{And for }\,\, 0<a\leq 1 \,\,\text{this quotient is bounded}
\end{aligned}



Therefore, by (4) and (6) we obtain the desired result



\zeta(s,a)=\frac{2\Gamma(1-s) }{(2 \pi)^{1-s}} \left(\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{1-s}}\right)


If we let s \to 1-s we obtain


\zeta(1-s,a)=\frac{2\Gamma(s) }{(2 \pi)^{s}} \left(\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{s}}+\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{s}}\right)(6)


for \sigma>1 and 0<a\leq1


Letting a \to 1-a in (6) we obtain


\zeta(1-s,1-a)=\frac{2\Gamma(s) }{(2 \pi)^{s}} \left(\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{s}}-\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{s}}\right)(7)


Adding (6) and (7) we get


\zeta(1-s,a)+\zeta(1-s,1-a)=\frac{4\Gamma(s) }{(2 \pi)^{s}}\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{s}}(8)


Subtracting (7) from (6) we obtain


\zeta(1-s,a)-\zeta(1-s,1-a)=\frac{4\Gamma(s) }{(2 \pi)^{s}}\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{s}}(9)

Comments

Popular posts from this blog

HARD INTEGRAL - PART II