FUNCTIONAL EQUATION FOR THE HURWITZ ZETA FUNCTION

        In today´s post we will derive a functional equation for the Hurwitz Zeta Function, namely:


\zeta\left(1-s,\frac{h}{k}\right)=\frac{2\Gamma(s)}{(2 \pi k)^s}\sum_{r=1}^k\cos\left(\frac{ \pi s}{2}}-\frac{2 \pi r h}{k}\right)\zeta\left(s,\frac{r}{k}\right)


To this end we introduce the periodic zeta function defined by the following expression:


F(x,s)=\sum_{n=1}^\infty\frac{e^{2 \pi i n x}}{n^s}(1)


Theorem 1:

\zeta(1-s,a)=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}\operatorname{F}(a,s)+e^{\frac{i \pi s}{2}}\operatorname{F}(-a,s)\right)(2)


for \sigma>1 and 0<a\leq1


Proof:

First recall the previously proved fourier expansion (see here)


\zeta(1-s,a)=\frac{2\Gamma(s) }{(2 \pi)^{s}} \left(\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{s}}+\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{s}}\right)(3)


for \sigma>1 and 0<a\leq1


Now lets expand (2) by means of Euler´s formula


\begin{aligned}
\zeta(1-s,a)&=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}\operatorname{F}(a,s)+e^{\frac{i \pi s}{2}}\operatorname{F}(-a,s)\right)\\
&=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}\sum_{n=1}^\infty\frac{e^{2 \pi i n a}}{n^s}+e^{\frac{i \pi s}{2}}\sum_{n=1}^\infty\frac{e^{-2 \pi i n a}}{n^s}\right)\\
&=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}\sum_{n=1}^\infty\frac{\cos(2 \pi  n a)+i\sin(2 \pi  n a)}{n^s}+e^{\frac{i \pi s}{2}}\sum_{n=1}^\infty\frac{\cos(2 \pi  n a)-i\sin(2 \pi  n a)}{n^s}\right)\\
&=\frac{\Gamma(s)}{(2 \pi)^s}\left(\left(e^{\frac{i \pi s}{2}}+e^{-\frac{i \pi s}{2}}\right)\sum_{n=1}^\infty\frac{\cos(2 \pi  n a)}{n^s}-i\left(e^{\frac{i \pi s}{2}}-e^{-\frac{i \pi s}{2}}\right)\sum_{n=1}^\infty\frac{i\sin(2 \pi  n a)}{n^s}\right)\\
&=\frac{2\Gamma(s) }{(2 \pi)^{s}} \left(\cos\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\cos\left(2a \pi n \right)}{n^{s}}+\sin\left(\frac{\pi s}{2}\right)\sum_{n=1}^\infty \frac{\sin\left(2a \pi n \right)}{n^{s}}\right)  \qquad \blacksquare
\end{aligned}


Lemmma 1:

Let h and k be two integers, 1\leq h \leq k, then for \sigma>1


F\left(\frac{h}{k},s\right)=\sum_{n=1}^\infty\frac{e^{2 \pi i n \frac{h}{k}}}{n^s}=\frac{1}{k^s}\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}}\zeta\left(s,\frac{r}{k}\right)(4)

Proof:

\begin{aligned}
\sum_{n=1}^\infty\frac{e^{2 \pi i n \frac{h}{k}}}{n^s}&=\sum_{r=1}^k\sum_{q=0}^\infty \frac{e^{2 \pi i r \frac{h}{k}}}{(kq+r)^s}\\
&=\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}}\sum_{q=0}^\infty \frac{1}{(kq+r)^s}\\
&=\frac{1}{k^s}\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}}\sum_{q=0}^\infty \frac{1}{\left(q+\frac{r}{k}\right)^s}\\
&=\frac{1}{k^s}\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}}\zeta\left(s,\frac{r}{k}\right) \qquad \blacksquare
\end{aligned}


To prove this equality used in the proof above


\sum_{n=1}^\infty\frac{e^{2 \pi i n \frac{h}{k}}}{n^s}&=\sum_{r=1}^k\sum_{q=0}^\infty \frac{e^{2 \pi i r \frac{h}{k}}}{(kq+r)^s}


Lets expand first it´s L.H.S.


\begin{aligned}
\sum_{n=1}^\infty\frac{e^{2 \pi i n \frac{h}{k}}}{n^s}&=\frac{e^{2 \pi i  \frac{h}{k}}}{1^s}+\frac{e^{4 \pi i  \frac{h}{k}}}{2^s}+\frac{e^{6 \pi i  \frac{h}{k}}}{3^s}+ \cdots+\frac{e^{2 \pi i  h}}{k^s}+\frac{e^{2 \pi i  \frac{h}{k}}}{(k+1)^s}+\cdots
\end{aligned}


We used the fact that e^{2 \pi i  h m}=1 for m an integer

Now, lets expand it´s R.H.S. and show that they are equal to each other


\begin{aligned}
\sum_{r=1}^k\sum_{q=0}^\infty \frac{e^{2 \pi i r \frac{h}{k}}}{(kq+r)^s}&=\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}} \left(\sum_{q=0}^\infty \frac{1}{(kq+r)^s}\right)\\
&=\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}} \left(\frac{1}{r^s}+\frac{1}{(k+r)^s}+\frac{1}{(2k+r)^s}+\frac{1}{(3k+r)^s}+\cdots\right)\\
&=\sum_{r=1}^k  \left(\frac{e^{2 \pi i r \frac{h}{k}}}{r^s}+\frac{e^{2 \pi i r \frac{h}{k}}}{(k+r)^s}+\frac{e^{2 \pi i r \frac{h}{k}}}{(2k+r)^s}+\frac{e^{2 \pi i r \frac{h}{k}}}{(3k+r)^s}+\cdots\right)\\
&=\sum_{r=1}^k  \frac{e^{2 \pi i r \frac{h}{k}}}{r^s}+\sum_{r=1}^k\frac{e^{2 \pi i r \frac{h}{k}}}{(k+r)^s}+\sum_{r=1}^k\frac{e^{2 \pi i r \frac{h}{k}}}{(2k+r)^s}+\sum_{r=1}^k\frac{e^{2 \pi i r \frac{h}{k}}}{(3k+r)^s}+\cdots\\
&=\left(\frac{e^{2 \pi i  \frac{h}{k}}}{1^s}+\frac{e^{4 \pi i  \frac{h}{k}}}{2^s}+\frac{e^{6 \pi i  \frac{h}{k}}}{3^s}+ \cdots+ \frac{e^{2 \pi i h}}{k^s}\right)+\\
&+\left(\frac{e^{2 \pi i  \frac{h}{k}}}{(k+1)^s}+\frac{e^{4 \pi i  \frac{h}{k}}}{(k+2)^s}+\frac{e^{6 \pi i  \frac{h}{k}}}{(k+3)^s}+ \cdots+ \frac{e^{2 \pi i h}}{(2k)^s}\right)+\cdots\\
\end{aligned}


Theorem 2:

If k and h are integers with 1 \leq h \leq k, then for all s we have


\zeta\left(1-s,\frac{h}{k}\right)=\frac{2\Gamma(s)}{(2 \pi k)^s}\sum_{r=1}^k\cos\left(\frac{ \pi s}{2}}-\frac{2 \pi r h}{k}\right)\zeta\left(s,\frac{r}{k}\right)

Proof:

Plugging (4) in (2) we obtain:


\begin{aligned}
\zeta(1-s,a)
&=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}F\left(\frac{h}{k},s\right)+e^{\frac{i \pi s}{2}}F\left(-\frac{h}{k},s\right)\right)\\
&=\frac{\Gamma(s)}{(2 \pi)^s}\left(e^{-\frac{i \pi s}{2}}\frac{1}{k^s}\sum_{r=1}^k e^{2 \pi i r \frac{h}{k}}\zeta\left(s,\frac{r}{k}\right)+e^{\frac{i \pi s}{2}}\frac{1}{k^s}\sum_{r=1}^k e^{-2 \pi i r \frac{h}{k}}\zeta\left(s,\frac{r}{k}\right)\right)\\
&=\frac{2\Gamma(s)}{(2 \pi k)^s}\sum_{r=1}^k\cos\left(\frac{ \pi s}{2}}-\frac{2 \pi r h}{k}\right)\zeta\left(s,\frac{r}{k}\right)  \qquad \blacksquare
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II