GAMMA REFLECTION FORMULA VIA CONTOUR INTEGRATION

\Gamma(a)\Gamma(1-a)=\frac{\pi}{\sin(a\pi)}

We have already proved this famous result in a previous post via real methods. Today I want to proof it via contour integration and in the end of the post, use it to compute a famous infinite series.


We start by considering the following integral

\int_{0}^{\infty}  \frac{x^{a-1}}{1+x}dx=\frac{\pi}{\sin a \pi}

0<a<1. Lets evaluate the complex integral

I=\oint_Cf(z)dz

where

f(z)=\frac{z^{a-1}}{1+z}

It´s clear that f(z) has a pole @ -1=e^{i \pi} and a branch @ z=0. We choose C to be the keyhole contour below.



We can Write

\oint_Cf(z)dz=\int_{\epsilon}^{R}\frac{x^{a-1}}{1+x}dx+\int_{\Gamma}\frac{z^{a-1}}{1+z}dz+\int_{R}^{\epsilon}\frac{(xe^{2 i \pi})^{a-1}}{1+xe^{2 i \pi}}dx+\int_{\gamma}\frac{z^{a-1}}{1+z}dz=2 \pi i Res\left(f(z) \right)\Big|_{z=-1}(1)

Let´s first calculate the residues

2 \pi i Res\left(f(z) \right)\Big|_{z=-1}=2 \pi i \lim_{z \rightarrow -1}(1+z)\frac{z^{a-1}}{(1+z) }=2 \pi i (e^{i \pi})^{a-1}(2)


Now let´s focus in each integral. Lets start by the integral around the big Arc and show that it vanishes as R \longrightarrow \infty

I_{\Gamma}= \int_{\Gamma}\frac{z^{a-1}}{1+z}dz

|I_{\Gamma}| \leq \int_{0}^{2 \pi}\frac{|z^{a-1}|}{|1+z|}|dz|

letting z=Re^{i \theta} \, \Rightarrow dz=iRe^{i \theta} d \theta. We have:

|z|=|R|

|dz|=R d \theta \, \text{and }\,|z^{a-1}|=R^{a-1}

z=(z+1)-1 \Rightarrow

|z| \leq|z+1|-|1| \Rightarrow

|z+1| \geq R-1

Then

|I_{\Gamma}| \leq R\int_{0}^{2 \pi}\frac{R^{a-1}}{R-1}|d \theta|=\frac{R^{a}}{R-1}\int_{0}^{2 \pi} d \theta=\frac{2 \pi R^{a}}{R-1}

=2 \pi \frac{R^{a+1}}{1-\frac{1}{R}} \, \longrightarrow 0 \,  \text{as}\, R \longrightarrow \infty

Since 0<a<1


Similarly, letting z= \epsilon e^{i \phi} over \gamma we get

I_{\gamma}=\int_{\gamma}\frac{z^{a-1}}{1+z}dz

|I_{\gamma}| \leq\epsilon\int_{0}^{2 \pi}\frac{\epsilon^{a-1}}{1-\epsilon}d\phi

|I_{\gamma}| \leq 2 \pi \lim_{\epsilon \rightarrow 0} \frac{\epsilon^{a}}{1-\epsilon} \, \longrightarrow 0


Therefore, from (1) and (2) we have

\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx-\int_{0}^{\infty}\frac{(xe^{2 i \pi})^{a-1}}{1+x}dx=2 \pi i (e^{i \pi})^{a-1}

\left(1-e^{2 i \pi(a-1)} \right)\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx=2 \pi i (e^{i \pi})^{a-1}

e^{i \pi (a-1)}\left(e^{ -i \pi(a-1)}-e^{ i \pi(a-1)} \right)\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx=2 \pi i e^{i \pi}^{(a-1)}

-\frac{\left(e^{ i \pi(a-1)}-e^{- i \pi(a-1)} \right)}{2i}\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx= \pi

-\sin(\pi(a-1))\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx= \pi

\sin(\pi a)\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx= \pi


\boxed{\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx= \frac{\pi}{\sin(\pi a)} }(3)


Lets start by the noting the following fact

\frac{1}{1+x}=\int_{0}^{\infty}e^{-(1+x)t}dt

Than

\int_{0}^{\infty}\frac{x^{x-1}}{1+x}du=\int_{0}^{\infty} x^{a-1}\int_{0}^{\infty}e^{-(1+x)t}dt\,dx

=\int_{0}^{\infty}\!\!\!\int_{0}^{\infty} x^{a-1}e^{-xt}e^{-t}dx\,dt

=\int_{0}^{\infty}e^{-t}\!\!\!\int_{0}^{\infty} x^{a-1}e^{-xt}dx\,dt

now let xt\longmapsto w in the inner integral

=\int_{0}^{\infty}e^{-t} \bigg[\int_{0}^{\infty} (\frac{w}{t})^{a-1}e^{-w}\frac{dw}{t} \bigg]\,dt

=\int_{0}^{\infty}e^{-t} \bigg[\frac{1}{t^{a}}\int_{0}^{\infty} {w}^{a-1}e^{-w}dw \bigg]\,dt

From the standard integral representation of the Gamma function

\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx=\int_{0}^{\infty}e^{-t} \bigg[\frac{\Gamma(a)}{t^{a}} \bigg]\,dt

=\Gamma(a)\int_{0}^{\infty}e^{-t} t^{-a}dt


\boxed{\int_{0}^{\infty}\frac{x^{a-1}}{1+x}dx=\Gamma(a)\Gamma(1-a)}(4)


Equating (3) and (4) obtain the reflection formula for the Gamma function:


\boxed{\Gamma(a)\Gamma(1-a)=\frac{\pi}{\sin(a\pi)}}(5)

if we enforce x \longrightarrow \frac{1}{2}-x

\Gamma(\tfrac{1}{2}-x)\Gamma(1-(\tfrac{1}{2}-x))=\Gamma(\tfrac{1}{2}-x)\Gamma(\tfrac{1}{2}+x)=\frac{\pi}{\sin\pi(\tfrac{1}{2}-x)}=\frac{\pi}{\cos\pi x}


\boxed{\Gamma(\tfrac{1}{2}-x)\Gamma(\tfrac{1}{2}+x)=\frac{\pi}{\cos\pi x}}        (6)


If we take logs on bth sides of (5) we obtain

\ln(\Gamma(a))+\ln(\Gamma(1-a))=\ln(\pi)-\ln(\sin(a\pi))(7)

differentiating (7) with respect to a

\psi(a)-\psi(1-a)=-\pi \cot(a \pi)(8)

(8) ia known as yje reflection formula of the Digamma function.

Now consider the following result that can be estabilished with the aid of (8)

\coth(a\pi)=\frac{1}{a\pi}+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{2a}{a^{2}+k^{2}}

Start with the infinite sum:

S=\sum_{k=0}^{\infty}\frac{1}{a^{2}+k^{2}}

=\frac{1}{2ia}\sum_{k=0}^{\infty}\frac{1}{k-ia}-\frac{1}{k+ia}

=\frac{1}{2ia}\sum_{k=1}^{\infty}\frac{1}{k-1-ia}-\frac{1}{k-1+ia}

&=&\frac{1}{2ia}\left[\sum_{k=1}^{\infty}\frac{1}{k}-\frac{1}{k-1+ia}-\sum_{k=1}^{\infty}\frac{1}{k}-\frac{1}{k-1-ia}\right]

Note that the two sums inside the brackets can be represented by the Digamma function

\sum_{k=0}^{\infty}\frac{1}{a^{2}+k^{2}}=\frac{1}{2ia}\left[\psi(ia)-\psi(-ia)\right]

Employing the recurrence relation of the Digamma function we can write

\psi(a+1)=\frac{1}{a}+\psi(a)

\sum_{k=0}^{\infty}\frac{1}{a^{2}+k^{2}}=\frac{1}{2ia}\left[\psi(ia)-\left(\psi(1-ia)+\frac{1}{ia}\right)\right]

Employing result (8)

=\frac{1}{2ia}\left[\psi(ia) - \psi(1-ia)+\frac{i}{a}\right]

=\frac{1}{2ia}\left[ -\pi \cot(i\pi a )+\frac{i}{a}\right]

=\frac{1}{2ia}\left[ -i\pi \frac{e^{iia \pi}+e^{-iia \pi}}{e^{iia \pi}-e^{-iia \pi}} +\frac{i}{a}\right]

=\frac{1}{2ia}\left[ i\pi \frac{\cosh(a\pi)}{\sinh(a\pi)} +\frac{i}{a}\right]

=\frac{1}{2a}\left[ \pi \frac{\cosh(a\pi)}{\sinh(a\pi)} +\frac{1}{a}\right]

And finally

\sum_{k=0}^{\infty}\frac{1}{a^{2}+k^{2}}=  \frac{\pi\coth(a\pi)}{2a} +\frac{1}{2a^{2}}

Rearranging terms we obtain

\boxed{\coth(a\pi)=\frac{1}{a\pi}+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{2a}{a^{2}+k^{2}}}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II