LAURENT EXPANSION RIEMANN ZETA FUNCTION

        In this post we will derive the Laurent expansion for the Riemann Zeta Function



\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{(-1)^n\gamma_n}{n!}(s-1)^n



Recall the first order Euler Maclaurin expansion for the riemann zeta function shown here


\zeta(s)=\frac{1}{s-1}+\frac12-s\int_1^\infty \frac{P_1(x)}{x^{s+1}}\,dx(1)



We can rewrite (1) as following:


\begin{aligned}
\zeta(s)&=\frac{1}{s-1}+\frac12-s\int_1^\infty \frac{P_1(x)}{x^{s+1}}\,dx\\
&=\frac{1}{s-1}+\frac12-s\int_1^\infty \frac{x-\lfloor x\rfloor-\frac12}{x^{s+1}}\,dx\\
&=\frac{1}{s-1}+\frac12-\frac{s}{2}\int_1^\infty \frac{dx}{x^{s+1}}-s\int_1^\infty \frac{x-\lfloor x\rfloor}{x^{s+1}}\,dx\\
&=\frac{1}{s-1}+\frac12-\frac{s}{2} \cdot \frac{1}{s}-s\int_1^\infty \frac{x-\lfloor x\rfloor}{x^{s+1}}\,dx\\
&=\frac{1}{s-1}+1-s\int_1^\infty \frac{x-\lfloor x\rfloor}{x^{s+1}}\,dx\\
\end{aligned}


Now, define the function:

\phi(s)=\zeta(s)-\frac{1}{s-1}=1-s\int_1^\infty \frac{x-\lfloor x\rfloor}{x^{s+1}}\,dx(2)


\phi(s)  is an analytic function, therefore, we can represent it by a series expansion around s=1 in the following form:


\phi(s)=\sum_{n=0}^\infty \frac{\phi^{(n)}(s_0)}{n!}(s-s_0)^n\Big|_{s_0=1}(3)


Lets calculate the coefficients of (3) by calculating the derivatives of \phi(s) using eq. (2) above.

For the first derivative we have:


\begin{aligned}
\phi^{\prime}(s)&=\frac{d}{ds}\left(1-s\int_1^\infty \frac{\{x\}}{x^{s+1}}\,dx\right)\\
&=\frac{d}{ds}\left(1-s\int_1^\infty \{x\}e^{-(s+1)\ln(x)}\,dx\right)\\
&=-\int_1^\infty \frac{\{x\}}{x^{s+1}}\,dx+s\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx\\
&=-\int_1^\infty \frac{\{x\}}{x^{s+1}}\left(1-s\ln(x) \right)\,dx \qquad \blacksquare
\end{aligned}

In the point s=1 we obtain


\phi^{\prime}(1)=-\int_1^\infty \frac{\{x\}}{x^{2}}\left(1-\ln(x) \right)\,dx


\begin{aligned}
\phi^{(2)}(s)&=\frac{d}{ds}\left(-\int_1^\infty \frac{\{x\}}{x^{s+1}}\,dx+s\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx\right)\\
&=\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx+\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx-s\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx\\
&=2\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx-s\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx\\
&=\int_1^\infty \frac{\{x\}}{x^{s+1}}\left(2-s\ln(x) \right)\ln(x)\,dx \qquad \blacksquare
\end{aligned}

for s=1 we obtain

\phi^{(2)}(1)=\int_1^\infty \frac{\{x\}}{x^{2}}\left(2-\ln(x) \right)\ln(x)\,dx


\begin{aligned}
\phi^{(3)}(s)&=\frac{d}{ds}\left(2\int_1^\infty \frac{\{x\}\ln(x)}{x^{s+1}}\,dx-s\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx\right)\\
&=-2\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx-\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx+s\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx\\
&=-3\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx+s\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx\\
&=-\int_1^\infty \frac{\{x\}}{x^{s+1}}\left(3-s\ln(x) \right)\ln^2(x)\,dx \qquad \blacksquare
\end{aligned}

for s=1 we obtain

\phi^{(3)}(1)=-\int_1^\infty \frac{\{x\}}{x^{2}}\left(3-\ln(x) \right)\ln^2(x)\,dx


\begin{aligned}
\phi^{(4)}(s)&=\frac{d}{ds}\left(-3\int_1^\infty \frac{\{x\}\ln^2(x)}{x^{s+1}}\,dx+s\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx\right)\\
&=3\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx+\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx-s\int_1^\infty \frac{\{x\}\ln^4(x)}{x^{s+1}}\,dx\\
&=4\int_1^\infty \frac{\{x\}\ln^3(x)}{x^{s+1}}\,dx-s\int_1^\infty \frac{\{x\}\ln^4(x)}{x^{s+1}}\,dx\\
&=\int_1^\infty \frac{\{x\}}{x^{s+1}}\left(4-s\ln(x) \right)\ln^3(x)\,dx \qquad \blacksquare
\end{aligned}


for s=1 we obtain


\phi^{(4)}(1)=\int_1^\infty \frac{\{x\}}{x^{2}}\left(4-\ln(x) \right)\ln^3(x)\,dx


If we keep this process further we may obtain the following general form :


\phi^{(n)}(s)=\int_1^\infty \frac{\{x\}}{x^{s+1}}\left(n-s\ln(x) \right)\ln^{n-1}(x)\,dx(4)


For n\geq 1. Evaluated at s=1 we obtain:


\phi^{(n)}(1)=(-1)^n\int_1^\infty \frac{\{x\}}{x^{2}}\left(n-\ln(x) \right)\ln^{n-1}(x)\,dx(5)


But we have already proved in a previous post that the integral in (5) is precisely the Stiltjies constants!


\gamma_{n}=\lim _{N \rightarrow \infty}\left\{\sum_{k=1}^{N} \frac{(\ln k)^{n}}{k}-\int_{1}^{N} \frac{(\ln x)^{n}}{x} d x\right\}=\lim _{N \rightarrow \infty}\left\{\sum_{k=1}^{N} \frac{(\ln k)^{n}}{k}-\frac{(\ln N)^{n+1}}{n+1}\right\}(6)


Plugging (6) in (5) we get

\phi^{(n)}(1)=(-1)^n \gamma_{n}(7)

for n\geq 1.

To find \phi(1) we need to calculate


\phi(1)=\lim_{s \to 1}\left(\zeta(s)-\frac{1}{s-1}\right)


Which we have also already calculated here and it´s equal to the Euler-Mascheroni constant.


\phi(1)=\gamma=\gamma_0(8)


Hence, plugging (7) and (8) back in (4) we obtain


\phi(s)=\sum_{n=0}^\infty \frac{(-1)^n\gamma_n}{n!}(s-1)^n(9)


Plugging (9) in (3) we get


\zeta(s)-\frac{1}{s-1}=\sum_{n=0}^\infty \frac{(-1)^n\gamma_n}{n!}(s-1)^n(10)


Or in the more known form


\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{(-1)^n\gamma_n}{n!}(s-1)^n


Which is the Laurent expansion of the Riemann Zeta function.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II