INFITE SUM 1/(4n+1)(4n+2)(4n+3)(4n+4) AND (-1)^n/(4n+1)(4n+2)(4n+3)(4n+4)

      Following the previous two posts 1,2, today we will compute the following two infinite sums, probably the last post about these sort of sums.


\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+2)(4n+3)(4n+4)}=\frac{\ln 2}{4} - \frac{\pi}{24}


S=\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+2)(4n+3)(4n+4)}=\frac{\pi}{6\sqrt{2}}-\frac{\ln 2}{24}-\frac{\pi}{16}-\frac{\coth^{-1} \sqrt{2}}{6\sqrt{2}}


      As before, the first sum is pretty straightforward, but the second one is much harder and demanded a good amount of computations. The first sum I could find the close form result to check our answer. The second one I could not find anywhere, but checked Wolfram Infinite sum calculator and it matches numerically!


S=\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+2)(4n+3)(4n+4)}

=\frac{1}{2}\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+4)}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{1}{(4n+2)(4n+3)}

=\frac{1}{2}\cdot\frac{1}{3}\sum_{n=0}^{\infty}\left( \frac{1}{(4n+1)}-\frac{1}{(4n+4)}\right)-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{1}{(4n+2)}-\frac{1}{(4n+3)}\right)

=\frac{1}{6}\cdot\frac{1}{4}\sum_{n=0}^{\infty}\left( \frac{1}{n+\frac{1}{4}}-\frac{1}{n+1}\right)-\frac{1}{2}\cdot\frac{1}{4}\sum_{n=0}^{\infty}\left(\frac{1}{n+\frac{1}{2}}-\frac{1}{n+\frac{3}{4}}\right)

=-\frac{1}{24}\left( \psi\left(\frac{1}{4}\right)+\gamma\right)-\frac{1}{8}\sum_{n=0}^{\infty}\left(\psi\left(\frac{3}{4}\right)-\psi\left(\frac{1}{2}\right)\right)

The values of \psi\left(\frac{1}{2}\right)\,\,\text{,}\psi\left(\frac{1}{4}\right)\,\,\text{and}\,\,\psi\left(\frac{3}{4}\right)  can be found here, then


S=-\frac{1}{24}\left(-\frac{\pi}{2}-3 \ln 2-\gamma+\gamma\right)-\frac{1}{8}\left(\frac{\pi}{2}-3 \ln 2-\gamma+\gamma+2 \ln 2\right)


=\frac{\pi}{38}+\frac{\ln 2}{8}-\frac{\pi}{16}+\frac{3 \ln 2}{8}-\frac{\ln 2}{4}


\boxed{\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+2)(4n+3)(4n+4)}=\frac{\ln 2}{4} - \frac{\pi}{24}}



S=\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+2)(4n+3)(4n+4)}


=\frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+4)}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{(4n+2)(4n+3)}


=\frac{1}{2}\cdot\frac{1}{3}\sum_{n=0}^{\infty}\left( \frac{(-1)^n}{4n+1}-\frac{(-1)^n}{4n+4}\right)-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{4n+2}-\frac{(-1)^n}{4n+3}\right)


=\frac{1}{6}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{4n}dx-\int_0^1x^{4n+3}dx \right)-\frac{1}{2}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{4n+1}dx-\int_0^1x^{4n+2}dx\right)


=\frac{1}{6}\left(\int_0^1\sum_{n=0}^{\infty}(-x^4)^ndx-\int_0^1x^{3}\sum_{n=0}^{\infty}(-x^4)^ndx \right)-\frac{1}{2}\left(\int_0^1x\sum_{n=0}^{\infty}(-x^4)^ndx-\int_0^1x^{2}\sum_{n=0}^{\infty}(-x^4)^ndx\right)


=\frac{1}{6}\left(\int_0^1\frac{1}{1+x^4}dx-\int_0^1\frac{x^{3}}{1+x^4}dx \right)-\frac{1}{2}\left(\int_0^1\frac{x}{1+x^4}dx-\int_0^1\frac{x^{2}}{1+x^4}dx\right)


Plugging the results (A.6),(A.9),(A.8) and (A.4) in the above equation we obtain


S=\frac{1}{6}\left(\frac{\pi}{4\sqrt{2}}+\frac{1}{2\sqrt{2}}\coth^{-1} \sqrt{2}-\frac{\ln 2}{4}\right)-\frac{1}{2}\left(\frac{\pi}{8}-\frac{\pi}{4\sqrt{2}}+\frac{1}{2\sqrt{2}}\coth^{-1} \sqrt{2}\right)


And finally!


\boxed{\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+2)(4n+3)(4n+4)}=\frac{\pi}{6\sqrt{2}}-\frac{\ln 2}{24}-\frac{\pi}{16}-\frac{\coth^{-1} \sqrt{2}}{6\sqrt{2}}}


Appendix

Lets start computing the following indefinite integral

I=\int\frac{1+x^2}{1+x^4}dx=\int\frac{1+x^2}{1+x^4}\cdot \frac{x^{-2}}{x^{-2}}dx

=\int\frac{1+x^{-2}}{x^{-2}+x^2}dx

=\int\frac{1+x^{-2}}{\left(x-x^{-1}\right)^2+2}dx

Let t=x-x^{-1} \,\, \Rightarrow \,\,dt=\left(1+x^{-2}\right)dx , then

I=\int\frac{1}{2+t^2}dt

=\frac{1}{2}\int\frac{1}{1+\frac{t^2}{2}}dt

Let t=\sqrt{2}u \,\, \Rightarrow \,\,dt=\sqrt{2}du , then

I=\frac{\sqrt{2}}{2}\int\frac{1}{1+u^2}du

I=\frac{\sqrt{2}}{2} \arctan u+C

\boxed{\int\frac{1+x^2}{1+x^4}dx=\frac{\sqrt{2}}{2} \arctan \left(\frac{x-x^{-1}}{\sqrt{2}} \right)+C}(A.1)


\int\frac{x^2-1}{1+x^4}dx=\int\frac{x^2-1}{1+x^4}\cdot \frac{x^{-2}}{x^{-2}}dx

=\int\frac{1-x^{-2}}{x^{-2}+x^2}dx

=\int\frac{1-x^{-2}}{\left(x^1+x^{-1}\right)^2-2}dx

Let t=x+x^{-1} \,\, \Rightarrow \,\,dt=\left(1-x^{-2}\right)dx , then

I=\int\frac{1}{t^2-2}dt

I=\frac{1}{2}\int\frac{1}{\frac{t^2}{2}-1}dt

Let t=\sqrt{2}u \,\, \Rightarrow \,\,dt=\sqrt{2}du , then

I=\frac{\sqrt{2}}{2}\int\frac{1}{u^2-1}dt=\frac{\sqrt{2}}{4}\left(\int\frac{1}{u-1}dt-\int\frac{1}{u+1}dt \right)

I=-\frac{\sqrt{2}}{4}\ln \frac{u+1}{u-1}+C

I=-\frac{\sqrt{2}}{4}\ln \left( \frac{\frac{x+x^{-1}}{\sqrt{2}}+1}{\frac{x+x^{-1}}{\sqrt{2}}-1}\right)+C

\boxed{\int\frac{x^2-1}{1+x^4}dx=-\frac{\sqrt{2}}{4}\ln \left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right)+C}(A.2)


\int\frac{x^2}{1+x^4}dx=\frac{1}{2}\int\frac{2x^2}{1+x^4}dx

=\frac{1}{2}\int\frac{x^2+x^2+1-1}{1+x^4}dx

=\frac{1}{2}\int\frac{1+x^2}{1+x^4}dx+\frac{1}{2}\int\frac{x^2-1}{1+x^4}dx(A.3)

Plugging (A.1) and (A.2) in (A.3)


\boxed{\int\frac{x^2}{1+x^4}dx=\frac{1}{2\sqrt{2}} \arctan \left(\frac{x^2-1}{\sqrt{2}x} \right)-\frac{1}{4\sqrt{2}}\ln \left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right)+C}


\int_0^1\frac{x^2}{1+x^4}dx=\left[\frac{1}{2\sqrt{2}} \arctan \left(\frac{x^2-1}{\sqrt{2}x} \right)-\frac{1}{4\sqrt{2}}\ln \left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right)\right]_0^1


=\frac{\pi}{4\sqrt{2}}-\frac{1}{4\sqrt{2}}\ln \left( \frac{2+\sqrt{2}}{2-\sqrt{2}}\right)

=\frac{\pi}{4\sqrt{2}}-\frac{1}{4\sqrt{2}}\ln \left( \frac{2+\sqrt{2}}{2-\sqrt{2}}\cdot\frac{2^{-1}}{2^{-1}}\right)

=\frac{\pi}{4\sqrt{2}}-\frac{1}{4\sqrt{2}}\ln \left( \frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}}\right)

Applying formula (A.11) we obtain


\boxed{\int_0^1\frac{x^2}{1+x^4}dx=\frac{\pi}{4\sqrt{2}}-\frac{1}{2\sqrt{2}}\coth^{-1} \sqrt{2}}(A.4)


I=\int\frac{1}{1+x^4}dx

Note that  2 = (1 + x^{2}) + (1-x^{2})

\int\frac{1}{1+x^4}dx=\frac{1}{2}\int\frac{( x^{2}+1) - (x^{2}-1)}{1+x^4}dx

=\frac{1}{2}\int\frac{1+x^2}{1+x^4}dx-\frac{1}{2}\int\frac{x^2-1}{1+x^4}dx(A.5)

Plugging (A.1) and (A.2) in (A.5) we obtain


\boxed{\int\frac{1}{1+x^4}dx=\frac{1}{2\sqrt{2}} \arctan \left(\frac{x^2-1}{\sqrt{2}x} \right)+\frac{1}{4\sqrt{2}}\ln \left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right)+C}


\int_0^1\frac{1}{1+x^4}dx=\left[\frac{1}{2\sqrt{2}} \arctan \left(\frac{x^2-1}{\sqrt{2}x} \right)+\frac{1}{4\sqrt{2}}\ln \left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right)\right]_0^1


\boxed{\int_0^1\frac{1}{1+x^4}dx=\frac{\pi}{4\sqrt{2}}+\frac{1}{2\sqrt{2}}\coth^{-1} \sqrt{2}}(A.6)


I=\int_0^1\frac{x^}{1+x^4}dx

Recall the formula

\boxed{\int_0^1\frac{x^{m}}{1+x^n}dx=\frac{1}{2n}\left(\psi\left( \frac{m+n+1}{2n}\right)-\psi\left(\frac{m+1}{2n} \right)\right)}(A.7)

\int_0^1\frac{x}{1+x^4}dx=\frac{1}{8}\left(\psi\left( \frac{6}{8}\right)-\psi\left(\frac{2}{8} \right)\right)

=\frac{1}{8}\left(\psi\left( \frac{3}{4}\right)-\psi\left(\frac{1}{4} \right)\right)

=\frac{1}{8}\left(\frac{\pi}{2}-3 \ln 2-\gamma+\frac{\pi}{2}+3 \ln 2+\gamma\right)

\boxed{\int_0^1\frac{x}{1+x^4}dx=\frac{\pi}{8}}(A.8)


I=\int_0^1\frac{x^{3}}{1+x^4}dx

Applying (A.7)

\int_0^1\frac{x^{3}}{1+x^4}dx=\frac{1}{8}\left(\psi\left( \frac{8}{8}\right)-\psi\left(\frac{4}{8} \right)\right)

=\frac{1}{8}\left(\psi\left( 1\right)-\psi\left(\frac{1}{2} \right)\right)

=\frac{1}{8}\left(-\gamma+\gamma+2 \ln 2\right)

\boxed{\int_0^1\frac{x^{3}}{1+x^4}dx=\frac{\ln 2}{4}}(A.9)


Inverse Hyperbolic Cotangent refresher

Recall the definition of hyperbolic cotangent

\coth y=\frac{\cosh y}{\sinh y}=\frac{e^y+e^{-y}}{e^y-e^{-y}}

Now call

x=\coth y\,\,\Leftrightarrow\,\,y=\coth^{-1} x

Then

x=\frac{e^y+e^{-y}}{e^y-e^{-y}}

xe^y-xe^{-y}=e^y+e^{-y}

(x-1)e^y=(x+1)e^{-y}

Multiply bote sides by e^y

(x-1)e^{2y}=(x+1)

e^{2y}=\frac{(x+1)}{(x-1)}

e^{y}=\sqrt{\frac{(x+1)}{(x-1)}}

y=\frac{1}{2}\ln \left( \frac{x+1}{x-1} \right)

\boxed{\coth^{-1} x=\frac{1}{2}\ln \left( \frac{x+1}{x-1} \right)}(A.10)

Observe that

\ln \left( 1+\frac{1}{x} \right)-\ln \left( 1-\frac{1}{x} \right)=\ln \left( \frac{1+\frac{1}{x}}{ 1-\frac{1}{x}} \right)

=\ln \left( \frac{\frac{x+1}{x}}{ \frac{x-1}{x}} \right)=\ln \left( \frac{x+1}{ x-1} \right)

Therefore

\ln \left( \frac{1+\frac{1}{x}}{ 1-\frac{1}{x}} \right)=\ln \left( \frac{x+1}{ x-1} \right)

And

\boxed{\coth^{-1} x=\frac{1}{2}\ln \left( \frac{1+\frac{1}{x}}{ 1-\frac{1}{x}} \right)}(A.11)

Comments

Popular posts from this blog