INFINITE SUM FROM GRADSHTEYN AND RYZHIK I

       I saw the following infinite sum in the monumental Table of Integrals, Series, and Products of Gradshteyn and Ryzhik in entry 0.238 3. and wanted to proof it.

\sum_{n=0}^{\infty}\frac{1}{(3n+1)(3n+2)(3n+3)(3n+4)}=\frac{1}{6}-\frac{ \ln 3}{4}+\frac{\pi}{12\sqrt{3}}

Since it wasn´t that bad, I thought of a variation, namely

\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+1)(3n+2)(3n+3)(3n+4)}= -\frac{1}{6}+\frac{4 \ln 2}{9}-\frac{\pi \sqrt{3}}{54}


This one was way harder than the first, but unfortunately it does not appear in GR to check if my computation matched with the correct answer. Then, I went to the infinite sum calculator of Wolfram, and was lucky enough that for this sum it returned back a closed form  that matched with the calculations! 

So lets get to it!


We will rely on the Digamma function to evaluate both sums, so it´s good to recall the following properties:

\psi(x)=-\gamma+\sum_{k=0}^{\infty}\left(\frac{1}{(n+1)}-\frac{1}{\left(n+x\right)} \right)(1)

\psi(x)-\psi(y)=\sum_{k=0}^{\infty}\left(\frac{1}{(n+y)}-\frac{1}{\left(n+x\right)} \right)(2)

\psi(1+x)=\frac{1}{x}+\psi(x)(3)


      For the first sum the biggest challenge is the partial fraction decomposition. Once We get through it, the Digamma function technique take´s care.


S=\sum_{n=0}^{\infty}\frac{1}{(3n+1)(3n+2)(3n+3)(3n+4)}

S=\frac{1}{2}\sum_{n=0}^{\infty}\frac{1}{(3n+1)(3n+4)}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{1}{(3n+2)(3n+3)}

=\frac{1}{2} \cdot\frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{1}{(3n+1)}-\frac{1}{(3n+4)} \right)-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{1}{(3n+2)}-\frac{1}{(3n+3) \right)}

=\frac{1}{6} \cdot\frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{1}{\left(n+\frac{1}{3}\right)}-\frac{1}{\left(n+\frac{4}{3}\right)} \right)-\frac{1}{2} \cdot \frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{1}{\left(n+\frac{2}{3}\right)}-\frac{1}{(n+1) \right)}

=\frac{1}{18} \sum_{n=0}^{\infty}\left(\frac{1}{\left(n+\frac{1}{3}\right)}-\frac{1}{\left(n+\frac{4}{3}\right)} \right)+ \frac{1}{6}\sum_{n=0}^{\infty}\left(\frac{1}{(n+1)}-\frac{1}{\left(n+\frac{2}{3}\right)} \right)

=\frac{1}{18} \left(\psi\left(\frac{4}{3}\right)-\psi\left(\frac{1}{3}\right) \right)+ \frac{1}{6}\left(\gamma+\psi\left(\frac{2}{3}\right)\right)

From equation (1),(2) and (3) above and this post we get


S=\frac{1}{18} \left(3-\frac{\pi}{2\sqrt{3}}-\frac{3 \ln 3}{2}-\gamma+\frac{\pi}{2\sqrt{3}}+\frac{3 \ln 3}{2}+\gamma\right)+ \frac{1}{6}\left(\gamma+\frac{\pi}{2\sqrt{3}}-\frac{3 \ln 3}{2}-\gamma\right)


And finally!


\boxed{\sum_{n=0}^{\infty}\frac{1}{(3n+1)(3n+2)(3n+3)(3n+4)}=\frac{1}{6}-\frac{ \ln 3}{4}+\frac{\pi}{12\sqrt{3}}}(4)


       The second sum requires a little more computation and patience but it´s worth it for sure. The partial fraction decomposition, is exactly the same as above.


S=\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+1)(3n+2)(3n+3)(3n+4)}

=\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+1)(3n+4)}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+2)(3n+3)}

=\frac{1}{2} \cdot\frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(3n+1)}-\frac{(-1)^n}{(3n+4)} \right)-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(3n+2)}-\frac{(-1)^n}{(3n+3) \right)}

= \frac{1}{6}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{3n}-x^{3n+3}dx \right)-\frac{1}{2}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{3n+1}-x^{3n+2}dx\right)}

= \frac{1}{6}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{3n}\left(1-x^{3}\right)dx \right)-\frac{1}{2}\sum_{n=0}^{\infty}(-1)^n\left(\int_0^1x^{3n}\left(x-x^{2}\right)dx \right)}

= \frac{1}{6}\int_0^1\left(1-x^{3}\right)\sum_{n=0}^{\infty}(-x^{3})^ndx -\frac{1}{2}\int_0^1\left(x-x^{2}\right)\sum_{n=0}^{\infty}(-x^{3})^ndx

= \frac{1}{6}\int_0^1\frac{1-x^{3}}{1+x^3}dx-\frac{1}{2}\int_0^1\frac{x-x^{2}}
{1+x^3}dx

= \frac{1}{6}\left(\int_0^1\frac{1}{1+x^3}dx-\int_0^1\frac{x^{3}}{1+x^3}dx\right)+\frac{1}{2}\left(\int_0^1\frac{x^{2}}
{1+x^3}dx-\int_0^1\frac{x}
{1+x^3}dx\right)(5)


All integrals in (5) are special instances of the following result proved in the appendix:


\boxed{\int_0^1\frac{x^{m}}{1+x^n}dx=\frac{1}{2n}\left(\psi\left( \frac{m+n+1}{2n}\right)-\psi\left(\frac{m+1}{2n} \right)\right)}


\int_0^1\frac{1}{1+x^3}dx=\frac{1}{6}\left(\psi\left( \frac{2}{3}\right)-\psi\left(\frac{1}{6} \right)\right)

\int_0^1\frac{1}{1+x^3}dx=\frac{1}{6}\left( \frac{\pi \sqrt{3}}{6}-\frac{3 \ln 3}{2}}-\gamma+\frac{\pi \sqrt{3}}{2}+ 2 \ln 2+\frac{3 \ln 3}{2}}+ \gamma\right)\right)


\boxed{\int_0^1\frac{1}{1+x^3}dx=\frac{\ln 2}{3}+ \frac{\pi \sqrt{3}}{9}}(6)


\int_0^1\frac{x^{3}}{1+x^3}dx=\frac{1}{6}\left(\psi\left( \frac{7}{6}\right)-\psi\left(\frac{2}{3} \right)\right)

=\frac{1}{6}\left(6+\psi\left( \frac{1}{6}\right)- \frac{\pi \sqrt{3}}{6}+\frac{3 \ln 3}{2}}+\gamma \right)\right)

=\frac{1}{6}\left(6-\frac{\pi \sqrt{3}}{2}-2 \ln 2-\frac{3 \ln 3}{2}-\gamma- \frac{\pi \sqrt{3}}{6}+\frac{3 \ln 3}{2}}+\gamma \right)\right)


\boxed{\int_0^1\frac{x^{3}}{1+x^3}dx=1-\frac{\ln 2}{3}- \frac{\pi \sqrt{3}}{9}}
(7)


\int_0^1\frac{x^{2}}{1+x^3}dx=\frac{1}{6}\left(\psi\left( 1\right)-\psi\left(\frac{1}{2} \right)\right)

=\frac{1}{6}\left(-\gamma+\gamma+2 \ln 2\right)


\boxed{\int_0^1\frac{x^{2}}{1+x^3}dx=\frac{\ln 2}{3}}(8)


\int_0^1\frac{x}{1+x^3}dx=\frac{1}{6}\left(\psi\left( \frac{5}{6}\right)-\psi\left(\frac{1}{3} \right)\right)

=\frac{1}{6}\left(\frac{\pi\sqrt{3}}{2}-2 \ln 2-\frac{3 \ln 3}{2}-\gamma +\frac{\pi\sqrt{3}}{6}+\frac{3 \ln 3}{2}+ \gamma\right)


\boxed{\int_0^1\frac{x}{1+x^3}dx=\frac{\pi \sqrt{3}}{9}-\frac{\ln2}{3}}(9)


Plugging (6),(7),(8) and (9) in (5)


\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+1)(3n+2)(3n+3)(3n+4)}= -\frac{1}{6}+\frac{\ln 2}{9}+\frac{\pi \sqrt{3}}{27}+\frac{\ln 2}{3}-\frac{\pi \sqrt{3}}{18}


And finally we obtain the wonderful result:


\boxed{\sum_{n=0}^{\infty}\frac{(-1)^n}{(3n+1)(3n+2)(3n+3)(3n+4)}= -\frac{1}{6}+\frac{4 \ln 2}{9}-\frac{\pi \sqrt{3}}{54}}(10)


Appendix

Recall the integral representation of the Digamma function

\psi(z)=\int_{0}^{\infty} \frac{e^{-t}}{t}-\frac{e^{-z t}}{1-e^{-t}} d t

\text {by the following substitution } e^{-t}=x \Rightarrow d t=-\frac{d x}{x} \,\text {we get }

\psi(z)=\int_{1}^{0} \frac{x}{-\ln x}-\frac{x^{z}}{1-x} \frac{(-d x)}{x}

\boxed{\psi(z)=-\int_{0}^{1} \frac{1}{\ln x}+\frac{x^{z-1}}{1-x} d x}(A.1)


Now lets proof the following result:

\int_0^1\frac{x^{p-1}-x^{q-1}}{1-x}dx=\psi\left( q\right)-\psi\left(p \right)

Proof:

\int_0^1\frac{x^{p-1}-x^{q-1}}{1-x}dx=\int_0^1\frac{x^{p-1}-x^{q-1}}{1-x}+\frac{1}{\ln x}-\frac{1}{\ln x}dx

=-\int_{0}^{1} \frac{1}{\ln x}+\frac{x^{q-1}}{1-x} d x+\int_{0}^{1} \frac{1}{\ln x}+\frac{x^{p-1}}{1-x} d x


\boxed{\int_0^1\frac{x^{p-1}-x^{q-1}}{1-x}dx=\psi\left( q\right)-\psi\left(p \right)}(A.2)


\int_0^1\frac{x^{m}}{1+x^n}dx=\frac{1}{2n}\left(\psi\left( \frac{m+n+1}{2n}\right)-\psi\left(\frac{m+1}{2n} \right)\right)

Proof:

\int_0^1\frac{x^{m}}{1+x^n}dx=\int_0^1\frac{x^{m}}{1+x^n}\frac{(1-x^n)}{(1-x^n)}dx

=\int_0^1\frac{x^{m}-x^{m+n}}{1-x^{2n}}dx

\text{let}\,\, x^{2n}=u \Rightarrow \,x=u^{\frac{1}{2n}}\Rightarrow \,dx=\frac{1}{2n}u^{\frac{1}{2n}-1}du

Thus

\int_0^1\frac{x^{m}}{1+x^n}dx=\frac{1}{2n}\int_0^1\frac{u^{\frac{m+1}{2n}-1}-u^{\frac{m+n+1}{2n}-1}}{1-u}du

and from (A.2) we can conclude that

\boxed{\int_0^1\frac{x^{m}}{1+x^n}dx=\frac{1}{2n}\left(\psi\left( \frac{m+n+1}{2n}\right)-\psi\left(\frac{m+1}{2n} \right)\right)}(A.3)


Comments

Popular posts from this blog

HARD INTEGRAL - PART II