INTEGRALS RELATED TO THE LAPLACE TRANSFORM OF THE LOGARITHM

Let´s proof today the following integrals

\int_0^{\infty}e^{-x}\ln x dx=-\gamma

\int_0^{\infty} e^{-x}\ln^2 x dx=\frac{\pi^2}{6}+\gamma^2

\int_0^{\infty} e^{-x}\ln^3 x dx=-2\zeta(3)-\frac{\gamma \pi^2}{2}-\gamma^3

\int_0^{\infty} e^{-x}\ln^4 x dx=\frac{3\pi^4}{20}+8\zeta(3)\gamma+\gamma^2\pi^2+\gamma^{4}


Recall the integral representation of the Gamma Function

\Gamma\left( z\right)=\int_0^{\infty}x^{z-1}e^{-x}dx

We can differentiate under the integral sign with respect to z to obtain the following results:

\Gamma^{\prime}\left( z\right)=\int_0^{\infty} x^{z-1}e^{-x}\ln x dx

\Gamma^{\prime \prime}\left( z\right)=\int_0^{\infty} x^{z-1}e^{-x}\ln^2 x dx

\Gamma^{\prime \prime \prime}\left( z\right)=\int_0^{\infty} x^{z-1}e^{-x}\ln^3 x dx

\Gamma^{(4)}\left( z\right)=\int_0^{\infty} x^{z-1}e^{-x}\ln^4 x dx

setting z=1 we obtain

\Gamma^{\prime}\left( 1\right)=\int_0^{\infty}e^{-x}\ln x dx(1)

\Gamma^{\prime \prime}\left( 1\right)=\int_0^{\infty} e^{-x}\ln^2 x dx(2)

\Gamma^{\prime \prime \prime}\left( 1\right)=\int_0^{\infty} e^{-x}\ln^3 x dx(3)

\Gamma^{(4)}\left( 1\right)=\int_0^{\infty} e^{-x}\ln^4 x dx(4)


On the other hand, we can obtain expressions for the derivatives of the Logarithm of the Gamma function as following

\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}

\boxed{\Gamma^{\prime}(x)=\Gamma(x)\psi(x)}(5)


\Gamma^{\prime\prime}(x)=\Gamma^{\prime}(x)\psi(x)+\psi^{\prime}(x)\Gamma(x)


\Gamma^{\prime\prime}(x)=\frac{\Gamma(x)}{\Gamma(x)}\Gamma^{\prime}(x)\psi(x)+\psi^{\prime}(x)\Gamma(x)


\boxed{\Gamma^{\prime\prime}(x)=\Gamma(x)\psi^2(x)+\Gamma(x)\psi^{\prime}(x)}(6)


\Gamma^{\prime\prime\prime}(x)=\Gamma^{\prime}(x)\psi^2(x)+2\Gamma(x)\psi(x)\psi^{\prime}(x)+\Gamma^{\prime}(x)\psi^{\prime}(x)+\Gamma(x)\psi^{\prime\prime}(x)


\Gamma^{\prime\prime\prime}(x)=\Gamma(x)\psi^3(x)+2\Gamma(x)\psi(x)\psi^{\prime}(x)+\Gamma(x)\psi(x)\psi^{\prime}(x)+\Gamma(x)\psi^{\prime\prime}(x)


\boxed{\Gamma^{\prime\prime\prime}(x)=\Gamma(x)\psi^3(x)+3\Gamma(x)\psi(x)\psi^{\prime}(x)+\Gamma(x)\psi^{\prime\prime}(x)}(7)


\Gamma^{(4)}(x)=\Gamma(x)\psi^4(x)+3\Gamma(x)\psi^{2}(x)\psi^{\prime}(x)+3\left(\Gamma(x)\psi(x)^2\psi^{\prime}(x)+\Gamma(x)\left(\psi^{\prime}(x)\right)^2+\Gamma(x)\psi(x)\psi^{\prime\prime}(x)\right)+\Gamma(x)\psi(x)\psi^{\prime\prime}(x)+\Gamma(x)\psi^{\prime\prime \prime}(x)


\boxed{\Gamma^{(4)}(x)=\Gamma(x)\psi^4(x)+6\Gamma(x)\psi^{2}(x)\psi^{\prime}(x)+3\Gamma(x)\psi^{\prime}(x)^2+4\Gamma(x)\psi(x)\psi^{\prime\prime}(x)+\Gamma(x)\psi^{\prime\prime \prime}(x)}(8)


Now recall the special values of the polygamma function

\psi\left( 1\right)=-\gamma(9)

\psi^{\prime}\left( 1\right)=\zeta(2)(10)

\psi^{\prime \prime}\left( 1\right)=-2\zeta(3)(11)

\psi^{\prime \prime \prime}\left( 1\right)=6\zeta(4)(12)


Setting z=1 in (5) and using (9) we obtain

\Gamma^{\prime}\left( 1\right)=\psi(1)\Gamma\left( 1\right)

\Gamma^{\prime}\left( 1\right)=-\gamma(13)

Equating (1) and (10) we get

\boxed{\int_0^{\infty}e^{-x}\ln x dx=-\gamma}(14)

Setting z=1 in (6)

\Gamma^{\prime \prime}\left( 1\right)=\left(\psi^{\prime}(1)+\psi^2(1)\right)\Gamma(1)

\Gamma^{\prime \prime}\left( 1\right)=\zeta(2)+\gamma^2(15)

Equating (2) and (15) we get

\boxed{\int_0^{\infty} e^{-x}\ln^2 x dx=\frac{\pi^2}{6}+\gamma^2}(16)


Setting z=1 in (8)

\Gamma^{\prime\prime\prime}(1)=\Gamma(1)\psi^3(1)+3\Gamma(1)\psi(1)\psi^{\prime}(1)+\Gamma(1)\psi^{\prime\prime}(1)

\Gamma^{\prime \prime \prime}\left( 1\right)=-2\zeta(3)-\frac{\gamma \pi^2}{2}-\gamma^3(17)

Equating (3) and (17) we get

\boxed{\int_0^{\infty} e^{-x}\ln^3 x dx=-2\zeta(3)-\frac{\gamma \pi^2}{2}-\gamma^3}(18)


Setting z=1 in (7)

\Gamma^{(4)}(1)=\Gamma(1)\psi^4(1)+6\Gamma(1)\psi^{2}(1)\psi^{\prime}(1)+3\Gamma(1)\psi^{\prime}(1)^2+4\Gamma(1)\psi(1)\psi^{\prime\prime}(1)+\Gamma(1)\psi^{\prime\prime \prime}(1)

\Gamma^{(4)}(1)=(-\gamma)^{4}+6(-\gamma)^2\zeta(2)+3\left(\zeta(2)\right)^2+4(-\gamma)\left(-2\zeta(3)\right)+6\zeta(4)

\Gamma^{(4)}(1)=\gamma^{4}+\gamma^2\pi^2+\frac{\pi^4}{12}+8\gamma\zeta(3)+\frac{\pi^2}{15}

\Gamma^{(4)}(1)=\frac{3\pi^4}{20}+8\zeta(3)\gamma+\gamma^2\pi^2+\gamma^{4}(19)

Equating (4) and (19) we get

\boxed{\int_0^{\infty} e^{-x}\ln^4 x dx=\frac{3\pi^4}{20}+8\zeta(3)\gamma+\gamma^2\pi^2+\gamma^{4}}(20)


Comments

Popular posts from this blog