INFINITE SERIES RELATED TO SPECIAL VALUES OF HARMONIC NUMBERS

From this Twitter post I saw the following results.

\sum_{n=1}^{\infty} \frac{1}{n(2 n+1)}=2-2\ln 2 \qquad \tag{1}(1)

\sum_{n=1}^{\infty} \frac{1}{n(3 n+1)}=3-\frac{3 \ln 3}{2}-\frac{\pi}{2 \sqrt{3}} \qquad \tag{2}(2)

\sum_{n=1}^{\infty} \frac{1}{n(4 n+1)}=4-\frac{\pi}{2}-3 \ln 2 \qquad \tag{3}(3)

\sum_{n=1}^{\infty} \frac{1}{n(6 n+1)}=6-\frac{\sqrt{3} \pi}{2}-\frac{3 \ln 3}{2}-2 \ln 2 \qquad \tag{4}(4)

These sums above are related to the Digamma function and the Harmonic numbers as we will see below


Recall the harmonic number

H_n=\sum_{k=1}^{n}\frac{1}{k}

=\sum_{k=1}^{n}\int_0^1 x^{k-1}dx

=\int_0^1 \sum_{k=1}^{n} x^{k-1}dx

H_n=\int_0^1\frac{1-x^n}{1-x}dx(5)

From (5) we can generalize the Harmonic numbers to non integer numbers switching n \mapsto x

H_x=\int_0^1\frac{1-t^x}{1-t}dt(6)

Now recall the digamma function and it´s infinite series representation

\psi(x+1)=-\gamma+\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+x}(7)

it´s integral representation

\psi(x+1)=-\gamma+\int_0^1\frac{1-t^x}{1-t}dt(8)

and it´s recurrence equation

\psi(x+1)=\frac{1}{x}+\psi(x)(9)

From (6) and (8) we get that

\psi(x+1)=-\gamma+H_x(10)

and from (9) we obtain

H_x=\gamma+\frac{1}{x}+\psi(x)(11)

From (7) we get

\psi(x)+\frac{1}{x}+\gamma=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+x}(12)


With equation (12) above and the special values of the Digamma function proved here, We are now equipped to compute the sums (1) to (4)

For (1) by partial fractions

\sum_{n=1}^{\infty}\frac{1}{n(2n+1)}=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{2}{2n+1}

=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{2}}

From (11) and (12) we obtain

\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{2}}=\psi\left(\frac{1}{2}\right)+2+\gamma(13)

\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{2}}=-\gamma -2\ln 2+2+\gamma

\boxed{\sum_{n=1}^{\infty} \frac{1}{n(2 n+1)}=2-2\ln 2}(14)

Similarly (2)

\sum_{n=1}^{\infty}\frac{1}{n(3n+1)}=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{3}{3n+1}

=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{3}}=\psi\left(\frac{1}{3}\right)+3+\gamma

=-\frac{\pi}{2 \sqrt{3}}-\frac{3 \ln 3}{2}-\gamma+3+\gamma

\boxed{\sum_{n=1}^{\infty} \frac{1}{n(3 n+1)}=3-\frac{3 \ln 3}{2}-\frac{\pi}{2 \sqrt{3}}}(15)

Next

\sum_{n=1}^{\infty}\frac{1}{n(4n+1)}=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{4}{4n+1}

=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{4}}=\psi\left(\frac{1}{4}\right)+4+\gamma

=-\frac{\pi}{2}-3 \ln 2-\gamma+4+\gamma

\boxed{\sum_{n=1}^{\infty} \frac{1}{n(4 n+1)}=4-\frac{\pi}{2}-3 \ln 2 }(16)

Finally

\sum_{n=1}^{\infty}\frac{1}{n(6n+1)}=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{6}{6n+1}

=\sum_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+\frac{1}{6}}=\psi\left(\frac{1}{6}\right)+6+\gamma

=-\frac{\sqrt{3} \pi}{2}-\frac{3 \ln 3}{2}-2 \ln 2-\gamma +6+\gamma

\boxed{\sum_{n=1}^{\infty} \frac{1}{n(6 n+1)}=6-\frac{\sqrt{3} \pi}{2}-\frac{3 \ln 3}{2}-2 \ln 2 }(17)


From (11) and (13) we obtain

\boxed{H_{\frac{1}{2}}=2-2\ln 2}(18)

From (11) and (15) we obtain

\boxed{H_{\frac{1}{3}}=3-\frac{3 \ln 3}{2}-\frac{\pi}{2 \sqrt{3}}}(19)

From (11) and (16) we obtain

\boxed{H_{\frac{1}{4}}=4-\frac{\pi}{2}-3 \ln 2 }(20)

From (11) and (17) we obtain

\boxed{H_{\frac{1}{6}}=6-\frac{\sqrt{3} \pi}{2}-\frac{3 \ln 3}{2}-2 \ln 2 }(21)

The special values above can be seen here


Comments

Popular posts from this blog