A FAMILY OF LOG INTEGRALS

 

        I saw this integral today in Twitter which is related to a family of integrals, and this post is dedicated to proof the following results and find the value of some particular cases of n


\int_{0}^{\infty}  \frac{\ln (x)}{1+x^{n}}d x=-\frac{\pi^{2}}{n^{2}} \cot \left(\frac{\pi}{n}\right) \csc \left(\frac{\pi}{n}\right)


\int_{0}^{\infty}  \frac{\ln^2 (x)}{1+x^{n}} d x=\frac{\pi^3}{n^3}\csc\left( \frac{\pi}{n}\right)\left(1+2 \cot^2\left( \frac{\pi}{n}\right)\right)


\int_0^{\infty}\frac{\ln^3(x)}{1+x^n}dx=-\frac{\pi^4}{n^4}\left(\frac{5\cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{6 \cot^3\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)


\int_0^{\infty}\frac{\ln^4(x)}{1+x^n}dx=\frac{\pi^5}{n^5}\left(\frac{5}{\sin\left( \frac{\pi}{n}\right)}+\frac{10 \cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} + \frac{18 \cot^2\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{24 \cot^4\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)



Lets start with the first integral:

\int_{0}^{\infty}  \frac{\ln (x)}{x^{n}+1}d x=-\frac{\pi^{2}}{n^{2}} \cot \left(\frac{\pi}{n}\right) \csc \left(\frac{\pi}{n}\right)


Consider first the following substitution x^n=w \, \Rightarrow \, dx=w^{\frac{1}{n}-1}\frac{dw}{n},  than:


\int_{0}^{\infty}  \frac{\ln (x)}{x^{n}+1}d x=\frac{1}{n}\int_{0}^{\infty}\frac{w^{\frac{1}{n}-1}\ln w^{1/n}}{1+w}dw


=\frac{1}{n^2}\int_{0}^{\infty}\frac{w^{\frac{1}{n}-1}\ln w}{1+w}dw(1)


Now recall the well known result proved here

\int_{0}^{\infty}  \frac{x^{a-1}}{1+x}dx=\frac{\pi}{\sin a \pi}

\int_{0}^{\infty}  \frac{x^{-1} e^{a \ln (x)}}{1+x}dx=\frac{\pi}{\sin a \pi}

Differentiating both sides with respect to a we get


\int_{0}^{\infty}  \frac{x^{a-1}  \ln (x)}{1+x}dx=\frac{-\pi^2 \cos a \pi}{\sin^2 a \pi}=- \pi^2 \cot a \pi \csc a \pi(2)


Comparing (1) and (2), we see that letting a=\frac{1}{n}, we obtain


\frac{1}{n^2}\int_{0}^{\infty}\frac{w^{\frac{1}{n}-1}\ln w}{1+w}dw=-\frac{\pi^2}{n^2}\cot \left(\frac{\pi}{n}\right) \csc \left(\frac{\pi}{n}\right)

or

\boxed{\int_{0}^{\infty}  \frac{\ln (x)}{1+x^{n}} d x=-\frac{\pi^{2}}{n^{2}} \cot \left(\frac{\pi}{n}\right) \csc \left(\frac{\pi}{n}\right)}(3)


And the first result is proved.

Now, if we let n=2 in (3) we get

\int_{0}^{\infty}  \frac{\ln (x)}{x^{2}+1} d x=-\frac{\pi^{2}}{4}} \cot \left(\frac{\pi}{2}\right) \csc \left(\frac{\pi}{2}\right)

\boxed{\int_{0}^{\infty}  \frac{\ln (x)}{x^{2}+1} d x=0}(4)

since \cot \left(\frac{\pi}{2}\right)=0.


for n=3

\int_{0}^{\infty}  \frac{\ln (x)}{x^{3}+1} d x=-\frac{\pi^{2}}{9}} \cot \left(\frac{\pi}{3}\right) \csc \left(\frac{\pi}{3}\right)

\int_{0}^{\infty}  \frac{\ln (x)}{x^{3}+1} d x=-\frac{\pi^{2}}{9}} \cdot \frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}}

\boxed{\int_{0}^{\infty}  \frac{\ln (x)}{x^{3}+1} d x=-\frac{2 \pi^{2}}{27}}}(5)


for n=4

\int_{0}^{\infty}  \frac{\ln (x)}{x^{4}+1} d x=-\frac{\pi^{2}}{16}} \cot \left(\frac{\pi}{4}\right) \csc \left(\frac{\pi}{4}\right)

\boxed{\int_{0}^{\infty}  \frac{\ln (x)}{x^{4}+1} d x=-\frac{\pi^{2}\sqrt{2}}{16}}}(6)


Now consider the second integral, namely:

\int_{0}^{\infty}  \frac{\ln^2 (x)}{1+x^{n}} d x=\frac{\pi^3}{n^3}\csc\left( \frac{\pi}{n}\right)\left(1+2 \cot^2\left( \frac{\pi}{n}\right)\right)

let x^n=w \, \Rightarrow \, dx=w^{\frac{1}{n}-1}\frac{dw}{n}

\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{n}+1} d x=\frac{1}{n}\int_{0}^{\infty}  \frac{w^{\frac{1}{n}-1}\ln^2 (w^{1/n})}{1+w}dw

=\frac{1}{n^3}\int_{0}^{\infty}  \frac{w^{\frac{1}{n}-1}\ln^2 (w)}{1+w}dw(7)

on the other hand from (2)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln (x)}{1+x}dx=\frac{-\pi^2 \cos a \pi}{\sin^2 a \pi}

differentiating the above equation with respect to a

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^2 (x)}{1+x}dx=\pi^3\left(\frac{\sin^3(a \pi)+ 2\cos^2 (a \pi)\sin(a \pi)}{\sin^4 a \pi}\right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^2 (x)}{1+x}dx=\pi^3\left(\frac{1}{\sin a \pi}+2 \frac{\cot^2(a \pi)}{\sin(a \pi)}\right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^2 (x)}{1+x}dx=\pi^3\left(\csc(a \pi)+2 \cot^2(a \pi)\csc(a \pi)\right)


\boxed{\int_{0}^{\infty}  \frac{x^{a-1}  \ln^2 (x)}{1+x}dx=\pi^3 \csc(a \pi)\left(1+2 \cot^2(a \pi)\right)}(8)

Comparing (7) and (8), and setting a=\frac{1}{n}  and the second result is established


\boxed{\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{n}+1} d x=\frac{\pi^3}{n^3}\csc\left( \frac{\pi}{n}\right)\left(1+2 \cot^2\left( \frac{\pi}{n}\right)\right)}(9)

for n=2

\boxed{\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{2}+1} d x=\frac{\pi^3}{8}}(10)

for n=3

\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{3}+1} d x=\frac{\pi^3}{27} \cdot \frac{2}{\sqrt{3}}\left(1+ \frac{2}{3}\right)


\boxed{\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{3}+1} d x=\frac{10 \pi^3}{81\sqrt{3}} }(11)

for n=4

\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{4}+1} d x=\frac{\pi^3}{64}\csc\left( \frac{\pi}{4}\right)\left(1+2 \cot^2\left( \frac{\pi}{4}\right)\right)

=\frac{\pi^3 \sqrt{2}}{64}\left(1+2 \right)\right)


\boxed{\int_{0}^{\infty}  \frac{\ln^2 (x)}{x^{4}+1} d x=\frac{3 \pi^2}{32 \sqrt{2}}}(12)


The third integral

\int_0^{\infty}\frac{\ln^3(x)}{1+x^n}dx=-\frac{\pi^4}{n^4}\left(\frac{5\cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{6 \cot^3\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)

letting x^n=w we obtain

\int_0^{\infty}\frac{\ln^3(x)}{1+x^n}dx=\frac{1}{n}\int_0^{\infty}\frac{w^{1/n-1}\ln^3(w^{1/n})}{1+w}dw

= \,\frac{1}{n^4}\int_0^{\infty}\frac{w^{1/n-1}\ln^3(w)}{1+w}dw

Differentiating both sides of (8) with respect to a we get

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^3 (x)}{1+x}dx=-\pi^4\left(\frac{\cot(a \pi)}{\sin(a \pi)}+2\left(\frac{2 \sin^4(a \pi)\cos(a \pi)+3\sin^2(a \pi)\cos^3(a \pi)}{\sin^6(a \pi)} \right)\right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^3 (x)}{1+x}dx=-\pi^4\left(\frac{\cot(a \pi)}{\sin(a \pi)}+\frac{4 \cos(a \pi)}{\sin^2(a \pi)}+\frac{6 \cos^3(a \pi)}{\sin^4(a \pi)} \right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^3 (x)}{1+x}dx=-\pi^4\left(\frac{5\cot(a \pi)}{\sin(a \pi)}+\frac{6 \cot^3(a \pi)}{\sin(a \pi)} \right)(13)

and we obtain

\boxed{\int_0^{\infty}\frac{\ln^3(x)}{1+x^n}dx=-\frac{\pi^4}{n^4}\left(\frac{5\cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{6 \cot^3\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)}(14)

for n=2

\boxed{\int_0^{\infty}\frac{\ln^3(x)}{1+x^2}dx=0}(15)

for n=3

\boxed{\int_0^{\infty}\frac{\ln^3(x)}{1+x^3}dx=-\frac{14 \pi^4}{243}}(16)

for n=4

\boxed{\int_0^{\infty}\frac{\ln^3(x)}{1+x^4}dx=-\frac{11 \pi^4}{128 \sqrt{2}}}(17)


For the last integral

\int_0^{\infty}\frac{\ln^4(x)}{1+x^n}dx=\frac{\pi^5}{n^5}\left(\frac{5}{\sin\left( \frac{\pi}{n}\right)}+\frac{10 \cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} + \frac{18 \cot^2\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{24 \cot^4\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)

let x^n=w

\int_0^{\infty}\frac{\ln^4(x)}{1+x^n}dx= \,\frac{1}{n}\int_0^{\infty}\frac{w^{1/n-1}\ln^4(w^{1/n})}{1+w}dw

= \,\frac{1}{n^5}\int_0^{\infty}\frac{w^{1/n-1}\ln^4(w)}{1+w}dw(18)

Differentiating both sides of (13) with respect to a we get

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^4 (x)}{1+x}dx=-\pi^4\left(5\left(\frac{-\pi \sin^3(a \pi)-2\pi \sin(a \pi) \cos^2(a \pi)}{\sin^4(a \pi)} \right)+6\left(\frac{3 \sin^5(a \pi) \cos^2(a \pi)+4 \sin^3(a \pi) \cos^4(a \pi)}{\sin^8(a \pi)} \right) \right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^4 (x)}{1+x}dx=\pi^5\left(5\left(\frac{1}{\sin(a \pi)}+\frac{2 \cos^2(a \pi)}{\sin^3(a \pi)} \right)+6\left( \frac{3 \cos^2(a \pi)}{\sin^3(a \pi)}+\frac{4 \cos^4(a \pi)}{\sin^5(a \pi)}\right) \right)

\int_{0}^{\infty}  \frac{x^{a-1}  \ln^4 (x)}{1+x}dx=\pi^5\left(\frac{5}{\sin(a \pi)}+\frac{10 \cot(a \pi)}{\sin(a \pi)} + \frac{18 \cot^2(a \pi)}{\sin(a \pi)}+\frac{24 \cot^4(a \pi)}{\sin(a \pi)} \right)(19)

Comparing (18) and (19) we conclude that

\boxed{\int_0^{\infty}\frac{\ln^4(x)}{1+x^n}dx=\frac{\pi^5}{n^5}\left(\frac{5}{\sin\left( \frac{\pi}{n}\right)}+\frac{10 \cot\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} + \frac{18 \cot^2\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)}+\frac{24 \cot^4\left( \frac{\pi}{n}\right)}{\sin\left( \frac{\pi}{n}\right)} \right)}(20)

If we let n=2 we obtain

\boxed{\int_0^{\infty}\frac{\ln^4(x)}{1+x^2}dx=\frac{5 \pi^5}{32}}(21)

If we let n=3 we get

\boxed{\int_0^{\infty}\frac{\ln^4(x)}{1+x^3}dx=\frac{ 2\pi^5}{243\sqrt{3}}\left(11+\frac{10}{\sqrt{3}}+\frac{8}{3} \right)}(22)

If we let n=4 we obtain

\boxed{\int_0^{\infty}\frac{\ln^4(x)}{1+x^4}dx=\frac{57\pi^5}{512 \sqrt{2}}}(23)


Ricardo Albahari

Comments

  1. There's a mistake in the calculations in line (19). It should be (5+28cot^2 + 24^cot^24)/sin. Thanks for this very interesting derivation!

    ReplyDelete

Post a Comment

Popular posts from this blog