The Beta Function

The Beta Function

Today´s post I want to talk about the Beta function and in the end of the post show it´s usefulness to compute a family of hard and important integrals.


Lets start observing the following fact: Consider the integral

I=\int_{0}^{\infty}e^{-tu}u^{x-1}du \qquad \qquad \qquad (1)

Now, let´s substitute  tu=w \, \Rightarrow \, du=\frac{dw}{t}   ,the limits of integration remain the same.

I=\int_{0}^{\infty}e^{-w}\Big(\frac{w}{t}\Big)^{x-1}\frac{dw}{t}

=\frac{1}{t^x}\underbrace{\int_{0}^{\infty}e^{-w}w^{x-1}dw}_{=\Gamma(x)}

and we conclude that

\int_{0}^{\infty}e^{-tu}u^{x-1}du = \frac{\Gamma(x)}{t^x}\qquad \qquad \qquad  (2)

Or

\boxed{\frac{1}{t^x}=\frac{1}{\Gamma(x)}\int_{0}^{\infty}e^{-tu}u^{x-1}du} \qquad \qquad \qquad  (3)


Now, lets use (3) to evaluate the integral

I= \int_{0}^{\infty}\frac{t^{x-1}}{\big( 1+t \big)^{x+y}}dt\qquad \qquad \qquad  (4)

According to (3) we can write

\frac{1}{t^{x+y}}=\frac{1}{\Gamma(x+y)}\int_{0}^{\infty}e^{-tu}u^{x+y-1}du \qquad \qquad \qquad  (5)

Substituting (5) in (4) we get

\int_{0}^{\infty}\frac{t^{x-1}}{\big( 1+t \big)^{x+y}}dt=\frac{1}{\Gamma(x+y)}\int_{0}^{\infty} \!\!\!\!\int_{0}^{\infty} t^{x-1}e^{-tu}e^{-u}u^{x+y-1}du \,dt

swapping the order of integration

I= \frac{1}{\Gamma(x+y)}\int_{0}^{\infty} e^{-u}u^{x+y-1} \bigg\{\int_{0}^{\infty} e^{-tu} t^{x-1}}dt \bigg \}\,du

The inner integral inside the curly brackets is in the same form as (2) above, therefore

I= \frac{1}{\Gamma(x+y)}\int_{0}^{\infty} e^{-u}u^{x+y-1} \bigg\{ \frac{\Gamma(x)}{u^x}\bigg \}\,du

= \frac{\Gamma(x)}{\Gamma(x+y)}\int_{0}^{\infty} e^{-u}u^{x+y-1}  \frac{1}{u^x}\,du

= \frac{\Gamma(x)}{\Gamma(x+y)}\underbrace{\int_{0}^{\infty} e^{-u}u^{y-1}  \,du}_{\Gamma(y)}

And finally!

\boxed{\int_{0}^{\infty}\frac{t^{x-1}}{\big( 1+t \big)^{x+y}}dt=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}}(6)

(6) is known as the Euler´s Beta Function and is usually written as

B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}


An important fact to observe is that the integral evaluated here

\int_{0}^{\infty}\frac{t^{x-1}}{ 1+t }dt=\frac{\pi}{\sin(\pi x)}=\Gamma(x)\Gamma(1-x)


is a special case of (6) where  x+y=1


Consider now the following substitution in (6)

u=\frac{t}{1+t}=1-\frac{1}{1+t}

1-u=\frac{1}{1+t}

1+t=\frac{1}{1-u}

dt=\frac{du}{(1-u)^2}

The limits change to

\text{when} \,\,\,\, t=0 \Rightarrow u=0

\text{when} \,\,\,\, t=\infty \Rightarrow u=1

therefore, we get

\int_{0}^{\infty}\frac{t^{x-1}}{\big( 1+t \big)^{x+y}}dt=\int_{0}^{1}\bigg( 1-\frac{1}{1-u}\bigg)^{x-1}\Big( 1-u\Big)^{x+y}\frac{du}{(1-u)^2}

=\int_{0}^{1}\bigg( \frac{u}{1-u}\bigg)^{x-1}\Big( 1-u\Big)^{x+y}\frac{du}{(1-u)^2}

=\int_{0}^{1}u^{x-1}\Big( 1-u\Big)^{y-1}du

We conclude that

B(x,y)=\int_{0}^{1}u^{x-1}\Big( 1-u\Big)^{y-1}du


\boxed{\int_{0}^{1}u^{x-1}\Big( 1-u\Big)^{y-1}du=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}}(7)


Lets consider another substitution in (7)

u=\cos^2(\theta) \Rightarrow du=2 \cos(\theta)(-\sin(\theta))d\theta

\text{when} \,\,\,\, u=0 \Rightarrow \theta=\frac{\pi}{2}

\text{when} \,\,\,\, u=1 \Rightarrow \theta=0

we get

\int_{0}^{1}u^{x-1}\Big( 1-u\Big)^{y-1}du=2\int_{\pi/2}^{0} (\cos^2(\theta))^{x-1}(\sin^2(\theta))^{y-1}\cos(\theta) \sin(\theta)(-d \theta)


\boxed{ \int_{0}^{\pi/2}\cos^{2x-1}(\theta)\sin^{2y-1}(\theta)d \theta=\frac{1}{2}\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}}(8)


A last substitution in (8), i.e.

2x-1=\alpha \qquad \text{and} \qquad 2y-1 = \beta

gives us

\int_{0}^{\pi/2}\cos^{\alpha}(\theta)\sin^{\beta}(\theta)d \theta=\frac{1}{2}\frac{\Gamma(\frac{\alpha+1}{2})\Gamma(\frac{\beta+1}{2})}{\Gamma(\frac{\alpha+\beta+2}{2})}(9)


This last form is extremely useful to evaluate a family of hard integrals. For instance, set \alpha=0 in (9)

\int_{0}^{\pi/2}\sin^{\beta}(\theta)d \theta=\frac{1}{2}\frac{\Gamma(\frac{1}{2})\Gamma(\frac{\beta+1}{2})}{\Gamma(\frac{\beta+2}{2})}

\int_{0}^{\pi/2}\sin^{\beta}(\theta)d \theta=\frac{\sqrt{\pi}}{2}\frac{\Gamma(\frac{1}{2}+ \frac{\beta}{2})}{\Gamma(1+\frac{\beta}{2})}

Now, differentiate the above expression with respect to  \beta

\frac{d}{d\beta}\int_{0}^{\pi/2}e^{\beta\log(\sin(\theta))}d \theta=\frac{\sqrt{\pi}}{2}\frac{d}{d\beta}\frac{\Gamma(\frac{1}{2}+ \frac{\beta}{2})}{\Gamma(1+\frac{\beta}{2})}

\int_{0}^{\pi/2}\sin^{\beta}(\theta)\log(\sin(\theta))d \theta=\frac{\sqrt{\pi}}{2}\frac{d}{d\beta}\frac{\Gamma(\frac{1}{2}+ \frac{\beta}{2})}{\Gamma(1+\frac{\beta}{2})}

setting \beta=0

\int_{0}^{\pi/2}\log(\sin(\theta))d \theta=\frac{\sqrt{\pi}}{2}\frac{d}{d\beta}\frac{\Gamma(\frac{1}{2}+ \frac{\beta}{2})}{\Gamma(1+\frac{\beta}{2})}\bigg|_{\beta=0}

We can keep this process of differentiation further to get

\boxed{\int_{0}^{\pi/2}\log^{k}(\sin(\theta))d \theta=\frac{\sqrt{\pi}}{2}\frac{d^{k}}{d\beta^{k}}\frac{\Gamma(\frac{1}{2}+ \frac{\beta}{2})}{\Gamma(1+\frac{\beta}{2})}\bigg|_{\beta=0}}

We will return to this last integral in a future post!


Apendix

Let´s calculate  \Gamma\Big(\frac{1}{2}\Big) .Recall the reflection formula of the Gamma function


\Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin(\pi x)}

setting  x=\frac{1}{2}   we get

\Gamma\Big(\frac{1}{2}\Big)\Gamma(1-\frac{1}{2})=\frac{\pi}{\underbrace{\sin(\frac{\pi}{2})}_{=1}}

\Gamma\Big(\frac{1}{2}\Big)^2=\pi

And therefore

\boxed{\Gamma\Big(\frac{1}{2}\Big)=\sqrt{\pi}}(A.1)


Now recall the integral representation of the gamma function

\Gamma(x)= \int_{0}^{\infty}e^{-u}u^{x-1}du(A.2)

Setting x=\frac{1}{2} in (A.2)

\Gamma\Big(\frac{1}{2}\Big)= \int_{0}^{\infty}e^{-u}u^{-1/2}du

Making the substitution u=x^2

\Gamma\Big(\frac{1}{2}\Big)= \int_{0}^{\infty}e^{-x^2}(x^2)^{-1/2}2xdx

\Gamma\Big(\frac{1}{2}\Big)= 2\int_{0}^{\infty}e^{-x^2}dx(A.3)

Equating (A.1) and (A.3) we get


\boxed{\int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}}(A.4)


The famous Gaussian integral!


Ricardo Albahari

Comments

Popular posts from this blog