HARMONIC NUMBERS AND HARMONIC SUMS

Harmonic numbers

Harmonic numbers are defined as

H_{0}=0

and

H_{n}=\sum_{k=1}^{n}\frac{1}{k}

We can derive a recurrence relation to H_{n}, namely

H_{n}=\sum_{k=1}^{n-1}\frac{1}{k}+\frac{1}{n}

H_{n}=H_{n-1}+\frac{1}{n}

Multiply both sides by x^n

H_{n}x^n=H_{n-1}x^n+\frac{x^n}{n}

Sum both sides from 1 to infinity

\sum_{n=1}^{\infty}H_{n}x^n=\sum_{n=1}^{\infty}H_{n-1}x^n+\sum_{n=1}^{\infty}\frac{x^n}{n}

\sum_{n=1}^{\infty}H_{n}x^n-x\sum_{n=1}^{\infty}H_{n-1}x^{n-1}=\sum_{n=1}^{\infty}\frac{x^n}{n}

\sum_{n=1}^{\infty}H_{n}x^n-x\sum_{n=0}^{\infty}H_{n}x^{n}=-\ln(1-x)

since H_{0}=0 we get

\sum_{n=1}^{\infty}H_{n}x^n-x\sum_{n=1}^{\infty}H_{n}x^{n}=-\ln(1-x)

(1-x)\sum_{n=1}^{\infty}H_{n}x^n=-\ln(1-x)

\boxed{\sum_{n=1}^{\infty}H_{n}x^n=-\frac{\ln(1-x)}{(1-x)}}(1)


Sums involving Harmonic Numbers

Now nefine

f_{p}^{k}(x)=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^p}x^n

(1) can be represented by

\boxed{f_{0}^{1}(x)=\sum_{n=1}^{\infty}H_{n}x^{n}=-\frac{\log(1-x)}{1-x}}(2)

Note that if we differentiate f_{p}^{k}(x) w.r. to x we get

\frac{df_{p}^{k}(x)}{dx}=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^p}nx^{n-1}

\frac{df_{p}^{k}(x)}{dx}=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^{p-1}}x^{n-1}

Multiplying both sides by x

x\frac{df_{p}^{k}(x)}{dx}=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^{p-1}}x^{n}

\boxed{\frac{df_{p}^{k}(x)}{dx}=\frac{f_{p-1}^{k}(x)}{x}}

On the other hand

f_{p}^{k}(x)=\int_{0}^{x}\frac{f_{p-1}^{k}(x)}{t}dt

f_{p}^{k}(x)=\int_{0}^{x}\frac{1}{t}\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^{p-1}}t^ndt

f_{p}^{k}(x)=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^{p-1}}\int_{0}^{x}t^{n-1}dt

\boxed{f_{p}^{k}(x)=\sum_{n=1}^{\infty}\frac{H_{n}^{k}}{n^{p}}x^n}

Therefore we get the recurrence relation

\boxed{\frac{df_{p}^{k}(x)}{dx}=\frac{f_{p-1}^{k}(x)}{x} \,\,\Longleftrightarrow \,\, f_{p}^{k}(x)=\int_{0}^{x}\frac{f_{p-1}^{k}(t)}{t}dt}(3)


Lets now try to compute

S=\sum_{n=1}^{\infty}\frac{H_{n}}{n^22^n}

which corresponds to f_{2}^{1}(x)\Big|_{x=\frac{1}{2}} in the notation introduced above.

From (3) we can work recursively to get

f_{2}^{1}(x)=\int_{0}^{x}\frac{f_{1}^{1}(t)}{t}dt

f_{1}^{1}(t)=\int_{0}^{t}\frac{f_{0}^{1}(u)}{u}du(4)

f_{2}^{1}(x)=\int_{0}^{x}\frac{1}{t}\int_{0}^{t}\frac{f_{0}^{1}(u)}{u}\,du\,dt

And from (2) we get that

\sum_{n=1}^{\infty}\frac{H_{n}}{n^2}x^n=\int_{0}^{x}\frac{1}{t} \Big\{-\int_{0}^{t}\frac{\ln(1-u)}{u(1-u)}\,du \Big\} \,dt(5)


Let start by computing the inner integral in (5), i.e.

I=-\int_{0}^{t}\frac{\ln(1-u)}{u(1-u)}\,du

Doing a partial fraction we get

I=-\int_{0}^{t}\frac{\ln(1-u)}{u}\,du-\int_{0}^{t}\frac{\ln(1-u)}{(1-u)}du

The first integral we immediatly recognize it as Li_{2}(t). For the second one, lets compute the indefinite version first and then plug the limits to the result.

\int\frac{\ln(1-u)}{(1-u)}du

First, lets make the change of variable 1-u=y \, \Rightarrow \, du=-dy. We get

-\int\frac{\ln(y)}{y}dy

Performing a second change of variable, \log(y)=w \, \Rightarrow \, dw=\frac{dy}{y}

-\int w dw=\frac{w^2}{2}+C

and therefore

\int\frac{\ln(1-u)}{(1-u)}du=\frac{\log^2(1-u)}{2}+C

Plugging the limits

-\int_{0}^{t}\frac{\ln(1-u)}{(1-u)}du=\frac{\log^2(1-t)}{2}

In conclusion we get that

I=Li_{2}(t)+\frac{\log^2(1-t)}{2}(6)

and from equations (4) we also conclude that

f_{1}^{1}(t)=\int_{0}^{t}\frac{f_{0}^{1}(u)}{u}du=I

f_{1}^{1}(t)=Li_{2}(t)+\frac{\log^2(1-t)}{2}

and

\boxed{\sum_{n=1}^{\infty}\frac{H_{n}}{n}x^n=Li_{2}(t)+\frac{\log^2(1-t)}{2}}(7)


To conclude our evaluation, we have to plug (6) back in (5)

\sum_{n=1}^{\infty}\frac{H_{n}}{n^2}x^n=\int_{0}^{x}\frac{1}{t} \Big\{ Li_{2}(t)+\frac{\log^2(1-t)}{2} \Big\} \,dt

\sum_{n=1}^{\infty}\frac{H_{n}}{n^2}x^n=\int_{0}^{x}\frac{Li_{2}(t)}{t}dt+\frac{1}{2}\int_{0}^{x}\frac{\log^2(1-t)}{t}  \,dt

\sum_{n=1}^{\infty}\frac{H_{n}}{n^2}x^n=Li_{3}(x)+\frac{1}{2}\underbrace{\int_{0}^{x}\frac{\log^2(1-t)}{t}  \,dt}_{I}(8)

Lets now in evaluating I by integrating by parts

\int_{0}^{x}\frac{\log^2(1-t)}{t}  \,dt=uv \big|_{0}^{x}-\int_{0}^{x}vdu

u=\log^2(1-t) \Rightarrow \, du=-2\frac{\log(1-t)}{(1-t)}dt

v=\log(t)

I=\log(x)\log^2(1-x)+2\int_{0}^{x}\log(1-t)\frac{\log(t)}{1-t}dt

Now observe that \frac{dLi_{2}(1-t)}{dt}=\frac{\log(t)}{(1-t)} (see apendix) and integrating by parts again we get

I=\log(x)\log^2(1-x)+2 \Big[ \log(1-t)Li_{2}(1-t) \Big|_{0}^{x}+\int_{0}^{x}\frac{Li_{2}(1-t)}{1-t}dt\Big]

I=\log(x)\log^2(1-x)+2\log(1-x)Li_{2}(1-x) +2Li_{3}(1-t)\Big|_{0}^{x}

\boxed{I=\log(x)\log^2(1-x)+2\log(1-x)Li_{2}(1-x) -2Li_{3}(1-x)+2\zeta(3)}(9)

Plugging (9) in (8) we get the desired result

\boxed{\sum_{n=1}^{\infty}\frac{H_{n}}{n^2}x^n=Li_{3}(x)+\frac{1}{2}\log(x)\log^2(1-x)+\log(1-x)Li_{2}(1-x) -Li_{3}(1-x)+\zeta(3)}(10)

If we set x=\frac{1}{2} in (10) we get

\sum_{n=1}^{\infty}\frac{H_{n}}{n^22^n}=Li_{3}(\frac{1}{2})+\frac{1}{2}\log(\frac{1}{2})\log^2(1-\frac{1}{2})+\log(1-\frac{1}{2})Li_{2}(1-\frac{1}{2}) -Li_{3}(1-\frac{1}{2})+\zeta(3)

Using the result Li_{2}\Big( \frac{1}{2}\Big)=\frac{\zeta(2)-\log^2(2)}{2}, that we will proof shortly, we get that

\boxed{\sum_{n=1}^{\infty}\frac{H_{n}}{n^22^n}=\zeta(3)-\log(2)\frac{\pi^2}{12}}


Apendix

Evaluating Li_{2}\Big(\frac{1}{2} \Big)

Lets start from the integral representation Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt-\int_{0}^{1-x}\frac{\log(1-t)}{t}dt

Make the change of variable 1-t=w in the second integral

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(w)}{(1-w)}dw

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(t)}{(1-t)}dt

Integrate by parts the second integral

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+ \Big[-\log(t)\log(1-t) \Big|_{1}^{x}+\int_{1}^{x}\frac{\log(1-t)}{t}dt \Big]

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(1-t)}{t}dt-\log(x)\log(1-x)

Li_{2}(x)+Li_{2}(1-x)=\underbrace{-\int_{0}^{1}\frac{\log(1-t)}{t}dt}_{=Li_{2}(1)}-\log(x)\log(1-x)

Li_{2}(x)+Li_{2}(1-x)=\zeta(2)-\log(x)\log(1-x)

Now plugging x=\frac{1}{2} in the above equation

2Li_{2}\Big(\frac{1}{2} \Big)=\zeta(2)-\log^2(2)

\boxed{Li_{2}\Big(\frac{1}{2} \Big)=\frac{\pi^2}{12}-\frac{\log^2(2)}{2} }


Showing that Li_{2}^{\prime}(1-x)=\frac{\log(x)}{1-x}

Recall that

Li_{2}(1-x)=\int_{0}^{1-x}\frac{Li_{1}(t)}{t}dt

Li_{2}(1-x)=\int_{0}^{1-x}\frac{1}{t}\sum_{k=1}^{\infty}\frac{t^k}{k}dt

Li_{2}(1-x)=\sum_{k=1}^{\infty}\frac{1}{k}\int_{0}^{1-x}t^{k-1}dt

Now, differentiating w.r. to x under the integral sign

Li_{2}^{\prime}(1-x)=-\sum_{k=1}^{\infty}\frac{(1-x)^{k-1}}{k}

Multiplying both sides by (1-x)

(1-x)Li_{2}^{\prime}(1-x)=-\sum_{k=1}^{\infty}\frac{(1-x)^{k}}{k}

and

Li_{2}^{\prime}(1-x)=\frac{\log(x)}{1-x}


Ricardo Albahari

Comments

Popular posts from this blog