Two remarkable sums due to Ramanujan-Part I

In this article we prove two remarkable results due to Ramanujan, namely


\begin{align*}
 \sum_{n=1}^\infty
 \frac{n }{e^{2 \pi n}-1}&=\frac{1}{24}-\frac{1}{8 \pi }
\end{align*}

and


\begin{align*}
        \sum_{n=1}^\infty \frac{1}{\sinh^2 \pi n}&= \frac{1}{6}-\frac{1}{2 \pi}
    \end{align*}


To this end we rely on the functional equation that the Dedekind´s eta 
function obeys, previously proved (here):


\begin{align*}
    \eta\left( -\frac{1}{\tau}\right)&=\sqrt{-i \tau}\,\,\eta\left( \tau\right)
\end{align*}

Click here for the proof.

Comments

Popular posts from this blog