Binet's Log Gamma Formulas
Today we will prove the famous Binet´s formulas  for Log Gamma function, namely:    Let´s start by computing the integral   Where we used the result proved here   Then,                              (1)                               Now recall Stirling’s approximation for the Gamma function  (2)  Taking logarithms in both sides of (2)  (3)  Plugging (3) in (1) and taking the limit   The L.H.S. goes to zero, and we conclude that                                                             Therefore we get    Now for the second Binet´s relation, consider the Integral   Where we have used   in the second line. Now make the following substitution,    to get:  (4)  Differentiating (4) w.r....