Another quick contour integral from the integralbot

In this blog entry we solve another integral from @integralbot via contour integration.



\begin{align*}
  \int_0^\infty \frac{e^{\cos ax}\cos\left(\sin ax+bx \right)}{c^2+x^2}\,dx&=\frac{\pi}{2c}e^{e^{-ac}-bc}
\end{align*}



Click here for the proof.

Comments

Popular posts from this blog