Transformation formula Dedekind´s eta function

In this blog entry we prove the transformation formula for the Dedekind´s eta function


\eta(\tau)=e^{\pi i \tau / 12} \prod_{n=1}^\infty \left(1-e^{2 \pi i n \tau} \right)


\begin{align*}
    \eta\left( -\frac{1}{\tau}\right)&=\sqrt{-i \tau}\,\,\eta\left( \tau\right)
\end{align*}

The proof is due to C.L. Siegel, and it´s done by contour integration.

Click here to read it.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II