INFINITE SUM cos(kx)/a^+k^2

In today´s post we will proof the following beautiful infinite sum


\sum_{k=1}^\infty \frac{\cos (kx)}{a^2+k^2}=\frac{\pi \cosh(a\pi-ax)}{2a\sinh(a \pi)}-\frac{1}{2a^2 }


To this end we will use Fourier series.


Recall the Fourier series representation


f(x)=\frac{a_0}{2}+\sum_{k=1}^\infty a_k\cos (kx) + \sum_{k=1}^\infty b_k \sin(kx)(1)


where the coefficients are given by


\begin{aligned}
&a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
&a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x \\
&b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x
\end{aligned}


If we choose f(x)=\cosh(ax)


We obtain

\cosh(ax)=\frac{\sinh(a \pi)}{a \pi}+\frac{2a\sinh(a\pi)}{\pi}\sum_{k=1}^\infty \frac{(-1)^k\cos (kx)}{a^2+k^2}(2)

Proof:

\begin{aligned}
a_0&=\frac1 \pi\int_{-\pi}^{\pi} \cosh(ax)\,dx\\
&=\frac{\sinh(ax)}{a\pi}\Bigg|_{-\pi}^{\pi}\\
&=\frac{\sinh(a\pi)-\sinh(-a\pi)}{a \pi}\\
&=\frac{\sinh(a\pi)+\sinh(a\pi)}{a \pi}\\
&=\frac{2\sinh(a\pi)}{a \pi} \qquad \blacksquare\\
\end{aligned}


\begin{aligned}
a_k&=\frac1 \pi\int_{-\pi}^{\pi}\cos(kx)\cosh(ax)\,dx\\
&=\frac2 \pi\int_{0}^{\pi}\cos(kx)\cosh(ax)\,dx\\
&=\frac2 \pi\int_{0}^{\pi}\cos(kx)\left( \frac{e^{ax}+e^{-ax}}{2}\right)\,dx\\
&=\frac1 \pi\int_{0}^{\pi}e^{ax}\cos(kx)\,dx+\int_{0}^{\pi}e^{-ax}\cos(kx)\,dx\\
&=\frac1 \pi Re\left(\int_{0}^{\pi}e^{ax}e^{ikx}\,dx+\int_{0}^{\pi}e^{-ax}e^{ikx}\,dx\right)\\
&=\frac1 \pi Re\left(\int_{0}^{\pi}e^{(a+ik)x}\,dx+\int_{0}^{\pi}e^{-(a-ik)x}\,dx\right)\\
&=\frac1 \pi Re\left(\frac{e^{(a+ik)x}}{a+ik}\Bigg|_{0}^{\pi}-\frac{e^{-(a-ik)x}}{a-ik}\Bigg|_{0}^{\pi}\right)\\
&=\frac1 \pi Re\left(\frac{e^{a\pi}\cos(k \pi)-1}{a+ik}+\frac{1-e^{-a\pi}\cos(k \pi)}{a-ik}\right)\\
&=\frac1 \pi Re\left(\frac{e^{a\pi}(-1)^k-1}{a+ik}+\frac{1-e^{-a\pi}(-1)^k}{a-ik}\right)\\
&=\frac1 \pi Re\left(\frac{\left(a-ik\right)\left(e^{a\pi}(-1)^k-1\right)}{a^2+k^2}+\frac{\left(a+ik\right)\left(1-e^{-a\pi}(-1)^k\right)}{a^2+k^2}\right)\\
&= \frac{a(-1)^k\left(e^{a\pi}-e^{-a\pi} \right)}{\pi(a^2+k^2)}\\
&=\frac{2a(-1)^k\sinh(a\pi)}{\pi(a^2+k^2)} \qquad \blacksquare
\end{aligned}


\begin{aligned}
b_k&=\frac1 \pi\int_{-\pi}^{\pi}\sin(kx) \cosh(ax)\,dx\\
&=\frac1 \pi\int_{-\pi}^{0}\sin(kx) \cosh(ax)\,dx+\frac1 \pi\int_{0}^{\pi}\sin(kx) \cosh(ax)\,dx\\
&=\frac1 \pi\int_{0}^{\pi}\sin(-kx) \cosh(-ax)\,dx+\frac1 \pi\int_{0}^{\pi}\sin(kx) \cosh(ax)\,dx\\
&=-\frac1 \pi\int_{0}^{\pi}\sin(kx) \cosh(ax)\,dx+\frac1 \pi\int_{0}^{\pi}\sin(kx) \cosh(ax)\,dx\\
&=0 \qquad \blacksquare
\end{aligned}


Plugging the coefficients in (1) and rearranging we obtain


\sum_{k=1}^\infty \frac{(-1)^k\cos (kx)}{a^2+k^2}=\frac{\pi\cosh(ax)}{2a\sinh(a \pi)}-\frac{1}{2a^2 }(3)


Letting x \to \pi-x


\begin{aligned}
\frac{\pi \cosh(a\pi-ax)}{2a\sinh(a \pi)}-\frac{1}{2a^2 }&=\sum_{k=1}^\infty \frac{(-1)^k\cos (k\pi-kx)}{a^2+k^2}\\
&=\sum_{k=1}^\infty \frac{(-1)^k\cos (k\pi)\cos (kx)}{a^2+k^2}+\sum_{k=1}^\infty \frac{(-1)^k\sin (k\pi)\sin (kx)}{a^2+k^2}\\
&=\sum_{k=1}^\infty \frac{(-1)^k(-1)^k\cos (kx)}{a^2+k^2}\\
&=\sum_{k=1}^\infty \frac{\cos (kx)}{a^2+k^2} \qquad \blacksquare\\
\end{aligned}



\boxed{\sum_{k=1}^\infty \frac{\cos (kx)}{a^2+k^2}=\frac{\pi \cosh(a\pi-ax)}{2a\sinh(a \pi)}-\frac{1}{2a^2 }}(4)


Note that if we let x=0 in (4) we recover a previous proved result


\boxed{\sum_{k=1}^\infty \frac{1}{a^2+k^2}=\frac{\pi \coth(a\pi)}{2a}-\frac{1}{2a^2 }}
(5)


And letting x=\pi we recover


\boxed{\sum_{k=1}^\infty \frac{(-1)^k}{a^2+k^2}=\frac{\pi \text{csch}(a\pi)}{2a}-\frac{1}{2a^2 }}(6)


Comments

Popular posts from this blog