VARIATION OF BINET´S INTEGRAL

In this post we obtain the following integrals


\begin{aligned}
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{4\pi  x}-1}dx=\frac12-\frac{3 \ln 2}{8}-\frac{\ln 2 \pi}{8}\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{2\pi  x}-1}dx=\frac12-\frac{\ln 2 \pi}{4}\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{\pi  x}-1}dx=\frac12-\frac{\ln 2}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{\pi  x/2}-1}dx=\frac12-\ln \pi-2 \ln 2+2 \ln \Gamma\left(\frac14 \right) \\
& \\
& \int_{0}^{\infty}\frac{\arctan(x)}{\sinh 2 \pi x}dx=\frac{\ln 2}{2}-\frac{\ln \pi}{4}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{\sinh  \pi x}dx=\frac{\ln \pi}{2}-\frac{\ln 2}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{\sinh  \frac{\pi x}{2}}dx=4 \ln \Gamma\left(\frac14\right)-2 \ln \pi-3 \ln 2\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{ 2\pi x}+1}dx=\frac{3}{4}\ln 2-\frac12\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{ \pi x}+1}dx=\frac{\ln \pi}{2}-\frac{1}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{ \pi x/2}+1}dx=2 \ln \Gamma\left(\frac14\right)-\frac12-\ln 2\pi
\end{aligned}


We have previously proved the following result


2\int_{0}^{\infty}\frac{\arctan\left(\frac{x}{z}\right)}{e^{2\pi x}-1}dx=\log(\Gamma(z))-z\log(z)+z+\frac{1}{2}\log(z)-\frac12\ln(2 \pi)(1)


Letting x \to zx we obtain


\int_{0}^{\infty}\frac{\arctan(x)}{e^{2\pi z x}-1}dx=\frac{\log(\Gamma(z))}{2z}-\frac{\log(z)}{2}+\frac12+\frac{1}{4z}\log(z)-\frac{1}{4z}\ln(2 \pi)(2)


From (2), we can easily obtain the following relations


\begin{aligned}
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{4\pi  x}-1}dx=\frac12-\frac{3 \ln 2}{8}-\frac{\ln 2 \pi}{8}\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{2\pi  x}-1}dx=\frac12-\frac{\ln 2 \pi}{4}\\
&\\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{\pi  x}-1}dx=\frac12-\frac{\ln 2}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{\pi  x/2}-1}dx=\frac12-\ln \pi-2 \ln 2+2 \ln \Gamma\left(\frac14 \right) \\
\end{aligned}(3)


Lemma 1

\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2}{e^{ 2 \pi x}-1}(4)

Proof:

\begin{aligned}
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2}{e^{2 \pi x}-1}\\
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{2e^{-\pi x}}{e^{ \pi x}-e^{-\pi x}}\\
&\frac{1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}-\frac{e^{-\pi x}}{\sinh \pi x}\\
&\frac{e^{-\pi x}+1}{\sinh \pi x}=\frac{2}{e^{\pi x}-1}\\
&\frac{1}{\sinh \pi x}=\frac{2}{(e^{\pi x}-1)(e^{-\pi x}+1)}\\
&\frac{1}{\sinh \pi x}=\frac{1}{\sinh \pi x} \qquad \blacksquare\\
\end{aligned}


From (4) and (3) we obtain


\begin{aligned}
\int_{0}^{\infty}\frac{\arctan(x)}{\sinh 2 \pi x}dx&=2\int_{0}^{\infty}\frac{\arctan(x)}{e^{2\pi  x}-1}dx-2\int_{0}^{\infty}\frac{\arctan(x)}{e^{4\pi  x}-1}dx\\
&=2\left(\frac12-\frac{\ln 2 \pi}{4}\right)-2\left(\frac12-\frac{3 \ln 2}{8}-\frac{\ln 2 \pi}{8}\right)\\
&=\frac{\ln 2}{2}-\frac{\ln \pi}{4} \qquad \blacksquare\\
\end{aligned}


In the same fashion we obtain


\begin{aligned}
&\int_{0}^{\infty}\frac{\arctan(x)}{\sinh  \pi x}dx=\frac{\ln \pi}{2}-\frac{\ln 2}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{\sinh  \frac{\pi x}{2}}dx=4 \ln \Gamma\left(\frac14\right)-2 \ln \pi-3 \ln 2
\end{aligned}


Lemma 2:

\frac{1}{e^x+1}=\frac{1}{e^{\pi x}-1}-\frac{2}{e^{ 2 \pi x}-1}(5)


From Lemma 2 and (3) we obtain:


\begin{aligned}
\int_{0}^{\infty}\frac{\arctan(x)}{e^{2 \pi x}+1}dx&=\int_{0}^{\infty}\frac{\arctan(x)}{e^{2\pi  x}-1}dx-2\int_{0}^{\infty}\frac{\arctan(x)}{e^{4\pi  x}-1}dx\\
&=\left(\frac12-\frac{\ln 2 \pi}{4}\right)-2\left(\frac12-\frac{3 \ln 2}{8}-\frac{\ln 2 \pi}{8}\right)\\
&=\frac{3}{4}\ln 2-\frac12 \qquad \blacksquare\\
\end{aligned}


Similarly


\begin{aligned}
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{ \pi x}+1}dx=\frac{\ln \pi}{2}-\frac{1}{2}\\
& \\
&\int_{0}^{\infty}\frac{\arctan(x)}{e^{ \pi x/2}+1}dx=2 \ln \Gamma\left(\frac14\right)-\frac12-\ln 2\pi
\end{aligned}

Comments

Popular posts from this blog