INTEGRAL \int_0^\infty \frac{x^{a}}{x^2+2x \cos(\theta)+1}\,dx

In this post we will evaluate the integral


\int_0^\infty \frac{x^{\alpha}}{x^2+2x \cos(\pi \beta)+1}\,dx=\frac{\pi}{\sin\left(\pi \beta \right)} \frac{\sin( \pi \alpha \beta)}{\sin\left(\alpha\pi\right)}


Consider the following integral


\begin{aligned}
I&=\int_0^\infty \frac{x^{a}}{x^2+2x \cos(\theta)+1}\,dx\\
&=\int_0^1 \frac{x^{a}}{x^2+2x \cos(\theta)+1}\,dx+\int_1^\infty \frac{x^{a}}{x^2+2x \cos(\theta)+1}\,dx\\
&=\int_0^1 \frac{x^{a}}{x^2+2x \cos(\theta)+1}\,dx+\int_0^1 \frac{x^{-a}}{x^2+2x \cos(\theta)+1}\,dx\\
&=\int_0^1 \frac{x^{a}+x^{-a}}{x^2+2x \cos(\theta)+1}\,dx\\
&=\frac{1}{\sin\left(\theta \right)} \sum_{n=1}^\infty(-1)^{n-1} \sin(n \theta)\int_0^1 \left(x^{n+a-1}+x^{n-a-1} \right)\,dx\\
&=\frac{1}{\sin\left(\theta \right)} \sum_{n=1}^\infty(-1)^{n-1} \sin(n \theta) \left(\frac{1}{n+a}+\frac{1}{n-a} \right)\\
&=\frac{1}{\sin\left(\theta \right)} \sum_{n=1}^\infty(-1)^{n-1} \sin(n \theta) \left(\frac{2n}{n^2-a^2} \right)\\
&=\frac{2}{\sin\left(\theta \right)} \sum_{n=1}^\infty \frac{(-1)^{n-1} n\sin(n \theta)}{n^2-a^2} \qquad(\text{fourier series of } \sin(a \theta))\\
&=\frac{\pi}{\sin\left(\theta \right)} \frac{\sin(a\theta)}{\sin\left(a\pi\right)} \qquad \blacksquare
\end{aligned}


Setting \theta=\pi \beta we obtain the desired result


\boxed{\int_0^\infty \frac{x^{\alpha}}{x^2+2x \cos(\pi \beta)+1}\,dx=\frac{\pi}{\sin\left(\pi \beta \right)} \frac{\sin( \pi \alpha \beta)}{\sin\left(\alpha\pi\right)}}


Appendix


Fourier Series \sin(ax) in [-\pi,\pi ]

A Fourier series representation is given by the following expression:

f(x) = \frac{a_0}{2} + \sum _ {k=1}^{\infty}\left(a_k\cos(kx) + b_k\sin (kx)\right)

where

a_0 = \frac{1}{\pi} \int^{\pi}_{-\pi} f(x)dx

a_k = \frac{1}{\pi} \int^{\pi}_{-\pi} f(x)\cos (kx)dx

b_k = \frac{1}{\pi} \int^{\pi}_{-\pi} f(x)\sin (kx)dx

Lets choose  f(x)=\sin(ax), then


\begin{aligned}
a_0&=\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(a x)\,dx\\
&=\frac{1}{\pi}\int_{-\pi}^{0}\sin(a x)\,dx+\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\,dx\\
&=-\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\,dx+\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\,dx\\
&=0
\end{aligned}


\begin{aligned}
a_k&=\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(a x)\cos(kx)\,dx\\
&=\frac{1}{\pi}\int_{-\pi}^{0}\sin(a x)\cos(kx)\,dx+\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\cos(kx)\,dx\\
&=-\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\cos(kx)\,dx+\frac{1}{\pi}\int_{0}^{\pi}\sin(a x)\cos(kx)\,dx\\
&=0
\end{aligned}


\begin{aligned}
b_k&=\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(a x)\sin(kx)\,dx\\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\cos\left((a-k)x\right)\,dx-\frac{1}{2\pi}\int_{-\pi}^{\pi}\cos\left((a+k)x\right)\,dx\\
&=\frac{1}{2(a-k)\pi}\int_{-\pi(a-k)}^{\pi(a-k)}\cos(x)\,dx-\frac{1}{2(a+k)\pi}\int_{-\pi(a+k)}^{\pi(a+k)}\cos(x)\,dx\\
&=\frac{1}{2(a-k)\pi}\left(\sin(x)\Big|_{-\pi(a-k)}^{\pi(a-k)}\right)-\frac{1}{2(a+k) \pi}\left(\sin(x)\Big|_{-\pi(a+k)}^{\pi(a+k)}\right)\\
&=\frac{1}{2(a-k)\pi}\left(\sin\left(\pi(a-k)\right)-\sin\left(-\pi(a-k)\right)\right)-\frac{1}{2(a+k)\pi}\left(\sin\left(\pi(a+k)\right)-\sin\left(-\pi(a+k)\right)\right)\\
&=\frac{\sin\left(\pi(a-k)\right)}{(a-k)\pi}-\frac{\sin\left(\pi(a+k)\right)}{(a+k)\pi}\\
&=\frac{\sin\left(a\pi\right)\cos(\pi k)}{(a-k)\pi}-\frac{\sin\left(a\pi\right)\cos(\pi k)}{(a+k)\pi}\\
&=\frac{(-1)^k\sin\left(a\pi\right)}{(a-k)\pi}-\frac{(-1)^k\sin\left(a\pi\right)}{(a+k)\pi}\\
&=\frac{2}{\pi} \cdot\frac{(-1)^k k\sin\left(a\pi\right)}{a^2-k^2}
\end{aligned}


Therefore

\sin(ax)=\frac{2\sin\left(a\pi\right)}{\pi} \sum_{k=1}^\infty \frac{ (-1)^{k-1} k \sin\left(k\pi\right) }{k^2-a^2}

Or

\frac{\pi\sin(ax)}{2\sin\left(a\pi\right)}= \sum_{k=1}^\infty \frac{ (-1)^{k-1} k \sin\left(k\pi\right) }{k^2-a^2}


Evaluating the product

\begin{aligned}
P&= \left(\sum_{n=0}^\infty (-1)^ne^{-i \theta n}x^n\right) \cdot  \left(\sum_{n=0}^\infty (-1)^ne^{i \theta n}x^n\right)\\
&=\left(\sum_{n=0}^\infty (-e^{-i \theta })^nx^n\right) \cdot \left(\sum_{n=0}^\infty (-e^{i \theta })^nx^n\right) \\
\end{aligned}

Taking the Cauchy product, We have that a_k=(-e^{-i \theta })^k and b_k=(-e^{i \theta })^k , we therefore obtain

\begin{aligned}
P&= \left(\sum_{n=0}^\infty (-1)^ne^{-i \theta n}x^n\right) \cdot  \left(\sum_{n=0}^\infty (-1)^ne^{i \theta n}x^n\right)\\
&=\sum_{n=0}^\infty\left(\sum_{k=0}^n (-e^{-i \theta })^k(-e^{i \theta })^{n-k} \right)x^n\\
&=\sum_{n=0}^\infty(-1)^n\left(\sum_{k=0}^n e^{i n \theta }e^{-2i k \theta } \right)x^n\\
&=\sum_{n=0}^\infty(-1)^n e^{i n \theta }\left(\sum_{k=0}^n e^{-2i k \theta } \right)x^n\\
&=\sum_{n=0}^\infty(-1)^n e^{i n \theta }\left(\frac{1-e^{-2i (n+1) \theta }}{1-e^{-2i  \theta }} \right)x^n \qquad \left(\text{geometric sum} \right)\\
&=\sum_{n=0}^\infty(-1)^n e^{i n \theta }\frac{e^{i \theta}}{e^{i \theta}}\left(\frac{1-e^{-2i (n+1) \theta }}{1-e^{-2i  \theta }} \right)x^n \\
&=\sum_{n=0}^\infty(-1)^n\left(\frac{e^{i (n+1)\theta}-e^{-i (n+1) \theta }}{e^{i \theta}-e^{-i  \theta }} \right)x^n \\
&=\sum_{n=0}^\infty(-1)^n\left(\frac{\sin\left((n+1)\theta \right)}{\sin\left(\theta \right)} \right)x^n \\
&=\sum_{n=1}^\infty(-1)^{n-1}\left(\frac{\sin\left(n\theta \right)}{\sin\left(\theta \right)} \right)x^{n-1}\\
&=\frac{1}{\sin\left(\theta \right)} \sum_{n=1}^\infty(-1)^{n-1} \sin(n \theta) x^{n-1}\qquad \blacksquare\\
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II