An easy looking integral, not so easy...

Easy looking integral, not so easy…

I saw this post from @infseriesbot and wanted to proof at least the first one. After a hardwork to compute this easy looking integral, I found out that the result stated by @infseriesbot is incorrect! Exctly, this time @infseriesbot is wrong. Checking numerically confirms the computation here.


\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=\frac{11}{8}\zeta(3)}



Proof

I=\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=\int_{0}^{1}\frac{\log(1-x)\log[(1-x)(1+x)]}{x}dx

=\int_{0}^{1}\frac{\log(1-x)\log(1-x)}{x}dx+\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx

=\underbrace{\int_{0}^{1}\frac{\log^2(1-x)}{x}dx}_{I_{1}}+\underbrace{\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx}_{I_{2}}


I_{1}=\int_{0}^{1}\frac{\log^2(1-x)}{x}dx

let 1-x=t

I_{1}=\int_{0}^{1}\frac{\ln^2(t)}{1-t} dt

=\int_{0}^{1}\ln^2(t)\sum_{k=0}^{\infty}t^kdt

=\sum_{k=0}^{\infty}\int_{0}^{1}t^k\ln^2(t)dt

Now use the fact that

\boxed{\int_{0}^{1}x^m ln^n(x)dx=\frac{(-1)^{n}n! }{(m+1)^{n+1}}}

for n=2 \,\,\text{and} \,\, m=k

I_{1}=\sum_{k=0}^{\infty}\frac{(-1)^{2}2! }{(k+1)^{3}}

\boxed{\int_{0}^{1}\frac{\log^2(1-x)}{x}dx=2\zeta(3)}


The second integral is a little trickier

I_{2}=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx

Observe the following

\Left(\log(1-x)+\log(1+x) \Right)^2=\log^2(1-x)+2\log(1-x)\log(1+x)+\log^2(1+x)

\log(1-x)\log(1+x)=\frac{\Left(\log[(1-x)(1+x)] \Right)^2-\log^2(1-x)-\log^2(1+x)}{2}

\log(1-x)\log(1+x)=\frac{\log^2(1-x^2)-\log^2(1-x)-\log^2(1+x)}{2}

dividing both sides by x and integrating from 0 to 1

\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=\frac{1}{2}\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx-\frac{1}{2}\int_{0}^{1}\frac{\log^2(1-x)}{x}dx-\frac{1}{2}\int_{0}^{1}\frac{\log^2(1+x)}{x}dx

Now we have to evaluate the three integrals on the RHS and we are done. I´ll state the value of each of the integrals and show the proof in the end.

\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\zeta(3)

The next integral is the same as I_{1} so no need to proof it again.

\int_{0}^{1}\frac{\log^2(1-x)}{x}dx=2\zeta(3)

\int_{0}^{1}\frac{\log^2(1+x)}{x}dx=\frac{1}{4}\zeta(3)

Putting all together we get

I_{2}=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=\frac{1}{2}\Left\{\zeta(3)-2\zeta(3)-\frac{1}{4}\zeta(3) \Right\}

\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\frac{5}{8}\zeta(3)}

Now summing the results of I_{1} and I_{2} we get the final result!

\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=2\zeta(3)-\frac{5}{8}\zeta(3)=\frac{11}{8}\zeta(3) 

Checking numerically we have \zeta(3)=1.2020569 \cdots and  \frac{11}{8} \cdot 1.2020569\approx 1.6528282417625, which agrees with WolframAlpha!


A Corollary

We just computed the integral

\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\frac{5}{8}\zeta(3)

On the other hand we can show that this integral equals

\sum_{n=1}^{\infty}\frac{(-1)^n H_{n}}{n^2} and conclude that

\sum_{n=1}^{\infty}\frac{(-1)^{n-1} H_{n}}{n^2}=\frac{5}{8}\zeta(3)

Proof:

Expanding \log(1+x) in Taylor series we get

I=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\int_{0}^{1}x^{n-1}\log(1-x)dx

Integrating by parts we get:

I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{\frac{\log(1-x)(x^n-1)}{n}\Big|_{0}^{1}+\frac{1}{n}\int_{0}^{1}\frac{x^n-1}{1-x}dx \bigg\}

I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{-\frac{1}{n}\int_{0}^{1}\frac{1-x^n}{1-x}dx \bigg\}

I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{-\frac{1}{n}H_{n} \bigg\}

\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\sum_{n=1}^{\infty}\frac{(-1)^{n-1}H_{n} }{n^2}}

and therefore

\boxed{\sum_{n=1}^{\infty}\frac{(-1)^{n-1} H_{n}}{n^2}=\frac{5}{8}\zeta(3)}


Proof that       \int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\zeta(3)


Let        1-x^2=t \Rightarrow \,\, dx=-\frac{dt}{2x}


\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\frac{1}{2}\int_{1}^{0}\frac{\log^2(t)}{x}\frac{(-dt)}{x}

=\frac{1}{2}\int_{0}^{1}\frac{\log^2(t)}{x^2}dt=\frac{1}{2}\int_{0}^{1}\frac{\log^2(t)}{1-t}dt

The last integral we have already computed, it´s I_{1}!  and it´s equal to 2\zeta(3), therefore


\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\frac{1}{2}2\zeta(3)

and

\boxed{\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\zeta(3)}


Now let´s proof the harder one!

I=\int_{0}^{1}\frac{\log^2(1+x)}{x}dx


Lets start with the substitution         1+x=\frac{1}{y} \, \Rightarrow \, dx=-\frac{dy}{y^2}


I=\int_{1/2}^{1}\frac{\log^2\Big( \frac{1}{y}\Big)}{\frac{1}{y}-1}\frac{dy}{y^2}=\int_{1/2}^{1}\frac{\log^2(y)}{y(1-y)}dy

=\int_{1/2}^{1}\frac{\log^2(y)}{y}dy+\int_{1/2}^{1}\frac{\log^2(y)}{(1-y)}dy

=\frac{1}{3}\log^3(y)\Big|_{1/2}^{1}+\int_{1/2}^{1}\frac{\log^2(y)}{(1-y)}dy

=\frac{\log^3(2)}{3}+\int_{1/2}^{1}\frac{\log^2(y)}{(1-y)}dy

=\frac{\log^3(2)}{3}+\int_{0}^{1}\frac{\log^2(y)}{(1-y)}dy-\int_{0}^{1/2}\frac{\log^2(y)}{(1-y)}dy

=\frac{\log^3(2)}{3}+2\zeta(3)-\int_{0}^{1/2}\frac{\log^2(y)}{(1-y)}dy

Let t=\frac{y}{1-y} in the last integral.   y=\frac{t}{1+t} \,\, \Rightarrow \,\, dy=\frac{dt}{(1+t)^2}


I=\frac{\log^3(2)}{3}+2\zeta(3)-\int_{0}^{1}\frac{\log^2\Big(\frac{t}{1+t} \Big)}{1-\frac{t}{1+t}}\frac{dt}{(1+t)^2}

=\frac{\log^3(2)}{3}+2\zeta(3)-\int_{0}^{1}\frac{\log^2\Big(\frac{t}{1+t} \Big)}{1+t}dt

=\frac{\log^3(2)}{3}+2\zeta(3)-\int_{0}^{1}\frac{\Big(\log(t)-\log(1+t) \Big)^2}{1+t}dt

I=\frac{\log^3(2)}{3}+2\zeta(3)-\underbrace{\int_{0}^{1}\frac{\log^2(t)}{1+t}dt}_{J_{1}}-\underbrace{\int_{0}^{1}\frac{\log^2(1+t)}{1+t}dt}_{J_{2}}+2\underbrace{\int_{0}^{1}\frac{\log(t)\log(1+t)}{1+t}dt}_{J_{3}}(1)


We now evaluate each of these three integrals separately

J_{1}=\int_{0}^{1}\frac{\log^2(t)}{1+t}dt

=\int_{0}^{1}\log^2(t)\sum_{k=0}^{\infty}(-1)^kt^kdt

=\sum_{k=0}^{\infty}(-1)^k\int_{0}^{1}\log^2(t)t^kdt

\sum_{k=0}^{\infty}(-1)^k\frac{2}{(k+1)^3}=2\eta(3)

using the formula that \eta(s)=(1-2^{1-s})\zeta(s)

We get

\boxed{J_{1}=\int_{0}^{1}\frac{\log^2(t)}{1+t}dt=\frac{3}{2}\zeta(3)}


J_{2}=\int_{0}^{1}\frac{\log^2(1+t)}{1+t}dt

To compute J_{2} I will first evaluate the indefinite version and then plug the limits.

\int\frac{\log^2(1+t)}{1+t}dt \qquad \text{let 1+t=u}

\int\frac{\log^2(u)}{u}du

Now integrate by parts with u=\log^2(u) \, \Rightarrow du=2\log(u)\frac{du}{u} and v=\log(u)

\int\frac{\log^2(u)}{u}du=\log^3(u)-2\int\frac{\log^2(u)}{u}du

\int\frac{\log^2(u)}{u}du=\frac{\log^3(u)}{3}

\int\frac{\log^2(1+t)}{1+t}dt=\frac{\log^3(1+t)}{3}

\boxed{J_{2}=\int_{0}^{1}\frac{\log^2(1+t)}{1+t}dt=\frac{\log^3(2)}{3}}


J_{3}=\int_{0}^{1}\frac{\log(t)\log(1+t)}{1+t}dt

To evaluate J_{3} we again consider Integration by parts.

Let u=log(t) \, \Rightarrow du=\frac{dt}{t}

And dv=\int\frac{\log(1+t)}{1+t}dt \, \Rightarrow v=\frac{\log^2(1+t)}{2}. To find v we used the same process used to calculate J_{2}

\int_{0}^{1}\frac{\log(t)\log(1+t)}{1+t}dt=\underbrace{\frac{\log^2(1+t)}{2}\log(t)}_{=0} \Big|_{0}^{1}-\frac{1}{2}\int_{0}^{1}\frac{\log^2(1+t)}{t}dt

Which is precisely -\frac{1}{2}I, the integral we are looking to evaluate!


Plugging back all the results in (1) we get

I=\frac{\log^3(2)}{3}+2\zeta(3)-\frac{\log^3(2)}{3}-\frac{3}{2}\zeta(3)-2\frac{1}{2}I

2I=\frac{1}{2}\zeta(3)

\boxed{\int_{0}^{1}\frac{\log^2(1+t)}{t}dt=\frac{1}{4}\zeta(3)}


Apendix

We used        \eta(s)=(1-2^{1-s})\zeta(s)


Proof:

(1-2^{1-s})\zeta(s)=\zeta(s)-\frac{1}{2^{s-1}}\zeta(s)

=\sum_{k=1}^{\infty}\frac{1}{k^s}-2\sum_{k=1}^{\infty}\frac{1}{(2k)^s}

Splitting the first sum between even and odd terms

=\sum_{k=1}^{\infty}\frac{1}{(2k)^s}+\sum_{k=1}^{\infty}\frac{1}{(2k-1)^s}-2\sum_{k=1}^{\infty}\frac{1}{(2k)^s}

=\Big\{\frac{1}{1^s}+\frac{1}{3^s}+\frac{1}{5^s}+ \cdots\Big\}-\Big\{\frac{1}{2^s}+\frac{1}{4^s}+\frac{1}{6^s}+ \cdots\Big\}

=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+\frac{1}{5^s}-\frac{1}{6^s}+ \cdots

=\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^s}=\eta(s)


Ricardo Albahari

Comments

Popular posts from this blog