POLYLOGARITHM IDENTITIES

                We have already seen polylogarithms functions and it´s usefulness for computing sums and integrals. This post is a sort o Apendix that I want to go a little bit further and derive some formulas for \operatorname{Li_{n}}(x) that will help us compute a nice integral in the next post.


Integral representation of Polylogarithms

The polylogarithm function is defined as

\operatorname{Li_{n}}(x)=\sum_{k=1}^{\infty}\frac{x^k}{k^{n}}

We can find a very conviniet integral representation for it as following: Start with

\operatorname{Li_{n+1}}(x)=\sum_{k=1}^{\infty}\frac{x^k}{k^{n+1}}

=\sum_{k=1}^{\infty}\frac{1}{k^{n}}\int_{0}^{x}t^{k-1}dt=\sum_{k=1}^{\infty}\frac{1}{k^{n}}\int_{0}^{x}\frac{t}{t}t^{k-1}dt

=\int_{0}^{x}\frac{1}{t}\sum_{k=1}^{\infty}\frac{t^k}{k^{n}}dt

\boxed{\operatorname{Li_{n+1}}(x)=\int_{0}^{x}\frac{\operatorname{Li_{n}}(t)}{t}dt}(1)


For example

\operatorname{Li_{2}}(x)=\int_{0}^{x}\frac{\operatorname{Li_{1}}(t)}{t}dt

\operatorname{Li_{2}}(x)=\int_{0}^{x}\frac{1}{t}\sum_{k=1}^{\infty}\frac{x^k}{k}dt

\boxed{\operatorname{Li_{2}}(x)=-\int_{0}^{x}\frac{\ln(1-x)}{t}dt}(2)


With (2) we can derive an important identitie.

\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)=-\int_{0}^{1-\frac{1}{x}}\frac{\ln(1-x)}{t}dt

differentiating the above expression with respect to x

\frac{d}{dx}\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)=-\frac{\ln\left(1-\left(1-\frac{1}{x} \right)\right)}{1-\frac{1}{x}}\frac{1}{x^2}

\operatorname{Li_{2}^{\prime}}\left(1-\frac{1}{x}\right)=-\frac{\ln\left(\frac{1}{x}\right)}{x^2-x}=\frac{\ln(x)}{x(x-1)}=-\frac{\ln(x)}{x(1-x)}

By partial fractions we get

\operatorname{Li_{2}^{\prime}}\left(1-\frac{1}{x}\right)=-\ln(x)\left(\frac{1}{x}+\frac{1}{1-x} \right)

\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)=-\int\frac{\ln(x)}{x}dx-\int\frac{\ln(x)}{1-x}dx

\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)=-\frac{\ln^2(x)}{2}-\operatorname{Li_{2}}(1-x)+C

The first integral is evaluated through integration by parts and the second by the integral definition above of \operatorname{Li_{2}}

Letting x=1 we get that C=0

\boxed{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)=-\frac{\ln^2(x)}{2}-\operatorname{Li_{2}}(1-x)}(3)


Another important formula for Li_{2} is the Euler´s relflection formula given by

Li_{2}(x)+Li_{2}(1-x)=\zeta(2)-\log(x)\log(1-x)

To proof it, lets start again from the integral representation

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt-\int_{0}^{1-x}\frac{\log(1-t)}{t}dt

Make the change of variable 1-t=w in the second integral

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(w)}{(1-w)}dw

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(t)}{(1-t)}dt

Integrate by parts the second integral

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+ \Big[-\log(t)\log(1-t) \Big|_{1}^{x}+\int_{1}^{x}\frac{\log(1-t)}{t}dt \Big]

Li_{2}(x)+Li_{2}(1-x)=-\int_{0}^{x}\frac{\log(1-t)}{t}dt+\int_{1}^{x}\frac{\log(1-t)}{t}dt-\log(x)\log(1-x)

Li_{2}(x)+Li_{2}(1-x)=\underbrace{-\int_{0}^{1}\frac{\log(1-t)}{t}dt}_{=Li_{2}(1)}-\log(x)\log(1-x)

\boxed{Li_{2}(x)+Li_{2}(1-x)=\zeta(2)-\log(x)\log(1-x)}(4)


Once (3) and (4) are estabilished, we can now derive a very important formula for Li_{3}, namely:

Li_{3}(x)+Li_{3}(1-x)+Li_{3}\left(1-\frac{1}{x}\right)=\zeta(3)+\frac{\ln ^{3}(x)}{6}+\frac{\pi^{2} \ln (x)}{6}-\frac{\ln ^{2}(x) \ln (1-x)}{2}

We proceed in the same fashion as we did above. Start with the integral representation

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\int_{0}^{1-\frac{1}{x}}\frac{\operatorname{Li_{2}}(t)}{t}dt

differentiating the above expression with respect to x

\operatorname{Li_{3}^{\prime}}\left(1-\frac{1}{x}\right)=\frac{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)}{1-\frac{1}{x}}\frac{1}{x^2}

\operatorname{Li_{3}^{\prime}}\left(1-\frac{1}{x}\right)=\frac{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)}{x^2-x}

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=-\int\frac{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)}{x(1-x)}dx

Performing a partial fraction decomposition on the right hand side

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=-\int\frac{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)}{x}dx-\int\frac{\operatorname{Li_{2}}\left(1-\frac{1}{x}\right)}{1-x}dx

Using (3) we can rewrite \operatorname{Li_{3}}\left(1-\frac{1}{x}\right) as a sum if four integrals, i.e.

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{1}{2}\int\frac{\ln^2(x)}{x}dx+\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{x}dx+\frac{1}{2}\int\frac{\ln^2(x)}{1-x}dx+\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{1-x}dx

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{\ln^3(x)}{6}+\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{x}dx+\frac{1}{2}\int\frac{\ln^2(x)}{1-x}dx-\operatorname{Li_{3}}\left(1-x\right)+ C

The constant C here will take care of all constants steming from the indefinite integrals

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\ln(x)\operatorname{Li_{2}}\left(1-x\right)+\frac{\ln^3(x)}{6}-\operatorname{Li_{3}}\left(1-x\right)-\frac{1}{2}\int\frac{\ln^2(x)}{1-x}dx + C

Using

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\ln(x)\operatorname{Li_{2}}\left(1-x\right)+\frac{\ln^3(x)}{6}-\operatorname{Li_{3}}\left(1-x\right)-\frac{1}{2}\left( -\ln^2(x)\ln(1-x)-2$\ln(x)Li_{2}(x)+2 Li_{3}(x) \right)+C

\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\ln(x)\operatorname{Li_{2}}\left(1-x\right)+\frac{\ln^3(x)}{6}-\operatorname{Li_{3}}\left(1-x\right)+\frac{\ln^2(x)\ln(1-x)}{2}+$\ln(x)Li_{2}(x)- Li_{3}(x) + C

Li_{3}(x)+\operatorname{Li_{3}}\left(1-x\right)+\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{\ln^3(x)}{6}+\frac{\ln^2(x)\ln(1-x)}{2}+\ln(x)\operatorname{Li_{2}}\left(1-x\right)+\ln(x)Li_{2}(x) + C

Li_{3}(x)+\operatorname{Li_{3}}\left(1-x\right)+\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{\ln^3(x)}{6}+\frac{\ln^2(x)\ln(1-x)}{2}+\ln(x) \left\{\operatorname{Li_{2}}\left(1-x\right)+Li_{2}(x) \right\} + C

and now using (4)

Li_{3}(x)+\operatorname{Li_{3}}\left(1-x\right)+\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{\ln^3(x)}{6}+\frac{\ln^2(x)\ln(1-x)}{2}+\ln(x) \left\{\zeta(2)-\log(x)\log(1-x) \right\} + C

Li_{3}(x)+\operatorname{Li_{3}}\left(1-x\right)+\operatorname{Li_{3}}\left(1-\frac{1}{x}\right)=\frac{\ln^3(x)}{6}-\frac{\ln^2(x)\ln(1-x)}{2}+\ln(x)\zeta(2)  + C

setting z=1 in the above equation we easily find that C=\zeta(3). Recall that \zeta(2)=\frac{\pi^2}{6} to finally get

\boxed{Li_{3}(x)+Li_{3}(1-x)+Li_{3}\left(1-\frac{1}{x}\right)=\zeta(3)+\frac{\ln ^{3}(x)}{6}+\frac{\pi^{2} \ln (x)}{6}-\frac{\ln ^{2}(x) \ln (1-x)}{2}} \qquad \qquad (5)


Evaluation of \int\frac{\operatorname{Li_{2}}\left(1-x\right)}{1-x}dx

\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{1-x}dx

let 1-x=u \Rightarrow dx=-du

\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{1-x}dx=-\int\frac{\operatorname{Li_{2}}\left(u\right)}{u}du=-Li_{3}(u)=-Li_{3}(1-x)


Evaluation of \int\frac{\operatorname{Li_{2}}\left(1-x\right)}{x}dx

\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{x}dx=uv-\int v du

Let

u=\operatorname{Li_{2}}\left(1-x\right)=-\int_{0}^{1-x}\frac{\ln(1-t)}{t}dt

\Rightarrow\,du=-\frac{\ln\left(1-(1-x)\right)}{1-x}(-dx)=\frac{\ln(x)}{1-x}dx

\text{and}\,\,v=\ln(x)

\boxed{\int\frac{\operatorname{Li_{2}}\left(1-x\right)}{x}dx=\ln(x)\operatorname{Li_{2}}\left(1-x\right)-\int\frac{\ln^2(x)}{1-x}dx}


Evaluation of \int\frac{\ln^2(x)}{1-x}dx

\int\frac{\ln^2(x)}{1-x}dx=uv-\int v du

let u=\ln^2(x) \Rightarrow du=2\frac{\ln(x)}{x}dx

and v=-\ln(1-x)

then,

\int\frac{\ln^2(x)}{1-x}dx=-\ln^2(x)\ln(1-x)+2\int\frac{\ln(x)\ln(1-x)}{x}dx

integrating by parts again letting

u=\ln(x) \Rightarrow du=\frac{1}{x}dx

v=\int\frac{\ln(1-x)}{x}dx=-Li_{2}(x)

\int\frac{\ln^2(x)}{1-x}dx=-\ln^2(x)\ln(1-x)-2$\ln(x)Li_{2}(x)+2 \int \frac{Li_{2}(x)}{x}dx

\int\frac{\ln^2(x)}{1-x}dx=-\ln^2(x)\ln(1-x)-2$\ln(x)Li_{2}(x)+2 Li_{3}(x)+C


\int\frac{\ln(x)}{x}dx=uv-\int vdu

let u=\ln(x) and v=\ln(x), then

\int\frac{\ln(x)}{x}dx=\ln^2(x)-\int\frac{\ln(x)}{x}dx

\boxed{\int\frac{\ln(x)}{x}dx=\frac{\ln^2(x)}{2}}

similarly

\int\frac{\ln^2(x)}{x}dx=\int\ln(x)\frac{\ln(x)}{x}dx=uv-\int vdu

let u=\ln(x) and v=\int\frac{\ln(x)}{x}dx=\frac{\ln^2(x)}{2}, then

\int\frac{\ln^2(x)}{x}dx=\frac{\ln^3(x)}{2}-\frac{1}{2}\int\frac{\ln^2(x)}{x}dx

2\int\frac{\ln^2(x)}{x}dx=\ln^3(x)-\int\frac{\ln^2(x)}{x}dx

3\int\frac{\ln^2(x)}{x}dx=\ln^3(x)

\boxed{\int\frac{\ln^2(x)}{x}dx=\frac{\ln^3(x)}{3}}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II