Lattice sums

In this entry we will evaluate symmetric infinite sums of the type


\begin{align*}
 S=\sum_{(n,m) \neq (0,0)}\frac{1}{(n^2+m^2)^s} 
\end{align*}

To this end we will rely on the previous established result (proved here)


\begin{align*}
     \left(\sum_{n=-\infty}^\infty q^{n^2} \right)^2=2 \sum_{n=-\infty}^\infty \frac{q^n}{1+q^{2n}} 
\end{align*}


Click here for the proof.

Comments

Popular posts from this blog