Summing some Eisenstein series

In this blog entry we will prove the following three beautifull infinte series


\begin{align*}
    &\sum_{n=1}^{\infty}  \frac{n^{5}   }{ e^{2 \pi  n  }-1 }=\frac{1}{504}\\
    &\sum_{n=1}^{\infty}  \frac{n^{9}   }{ e^{2 \pi  n  }-1 }=\frac{1}{264}\\
    &\sum_{n=1}^{\infty}  \frac{n^{13}   }{ e^{2 \pi  n  }-1 }=\frac{1}{24}\\
\end{align*}


Click here for the proof.

Comments

Popular posts from this blog