INFINITE SERIES INVOLVING \sech^2(n \pi s)

In this blog entry we will prove the following three results related to the Jacobi Theta function


\begin{align*}
  &\sum_{n=-\infty}^\infty n^2 e^{-\pi n^2 } =\frac{1}{4\pi^{3/4}\Gamma\left(\frac34 \right)}\\
& \sum_{n=-\infty}^\infty \frac{n \sinh(n \pi )}{\cosh^2(n \pi )}
=\frac{1}{2\sqrt{\pi}\Gamma^2\left(\frac34 \right)}\\
& \frac{1}{2}\sum_{n=1}^\infty \frac{1-\tanh(n \pi )}{n}
=\frac{\pi}{4}+\frac14\ln \pi-\frac54 \ln 2 - \ln \Gamma\left( \frac34\right)
\end{align*}


Click here for the proof.


It relies on the Jacobi triple product (proved here)


\begin{align*}
      \sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n}&=\prod_{n=1}^{\infty}\left(1+z q^{2 n-1}\right)\left(1+z^{-1} q^{2 n-1}\right)\left(1-q^{2 n}\right) \label{jacobi triple product}
\end{align*}


And special value of Jacobi theta function (proved here)


\begin{align*}
  \sum_{n=-\infty}^\infty  e^{-\pi n^2 } &=\frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34 \right)} 
\end{align*}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II