Infinite series involving sech squared PART II

In this post we prove the following infinite sum


\begin{align*}
\sum_{n=-\infty}^\infty \frac{1}{\cosh^2(\pi n )}=\frac{1}{\pi}+\frac{\Gamma^4\left( \frac14\right)}{8 \pi^3} 
 \end{align*}


Click here for the proof.


We relied in a few previous established results:

\begin{align*}
         \vartheta_4^4(q)=1+8\sum_{n=1}^\infty \frac{(-1)^n n q^n}{1+q^n} 
     \end{align*}

Proved here

\begin{align*}
         \ln \vartheta_2\left(e^{-s \pi}\right)-\ln 2 +\frac{\pi s}{4} &=\frac{1}{2}\sum_{n=1}^\infty \frac{1-\tanh(n \pi s)}{n} 
\end{align*}


\begin{align*}
  \sum_{n=-\infty}^\infty n^2 e^{-\pi n^2 } &=\frac{1}{4 \pi} \sum_{n=-\infty}^\infty  e^{-\pi n^2 } 
\end{align*}


Both proved here. And


\begin{align*}
    \vartheta_3(e^{-\pi})= \sum_{n=-\infty}^\infty e^{-\pi n^2}=\frac{\Gamma\left(\frac{1}{4} \right)}{\pi^{3/4}\sqrt{2}}
\end{align*}

Proved here.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II