PAIR OF ARCTAN INTEGRALS

In this post we will evaluate the follwoing pair of integrals. Click here to the proof:



\begin{align*}
\int_0^\infty \frac{\arctan(x)}{\sqrt{x}(1+x^2)}\,dx=\frac{\pi^2}{4\sqrt{2}}-\frac{\pi \ln(2)}{2\sqrt{2}}  
 \end{align*}


\begin{align*}
\int_0^\infty \frac{\sqrt{x}\arctan(x)}{(1+x^2)}\,dx=\frac{\pi^2}{4\sqrt{2}}+\frac{\pi \ln(2)}{2\sqrt{2}}  
 \end{align*}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II