INTEGRAL INVOLVING ARCTAN SQUARED PART -1

Today we will prove this beauty:


\begin{align*}
\int_0^1 \frac{\arctan^2(x)\ln(1+x)}{1+x^2}\,dx&=\frac{\pi^3 \ln(2)}{384}+\frac{21 \pi}{256}\zeta(3)-\frac{3}{16}\zeta(2)G
\end{align*}


Click here to see the proof.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II