Derivative of Dirichlet Eta function @ 1

        Today we will evaluate the following infinite sum which corresponds to the derivative of Dirichlet eta function @ 1


\sum_{n=1}^{\infty}\frac{(-1)^n\ln(n)}{n}=\gamma\ln(2)-\frac{\ln^2(2)}{2}


As a bonus we will compute the following integral


\int_0^\infty \frac{x\ln(x)}{e^{x^2}+1}\,dx=-\frac{\ln^2(2)}{8}


Lets first introduce a lemma:

Lemma 1:

\sum_{n=1}^{2N}(-1)^na_n+\sum_{n=1}^{2N}a_n=2\sum_{n=1}^{N}a_{2n}(1)

Proof:


\begin{aligned}
\sum_{n=1}^{2N}(-1)^na_n+\sum_{n=1}^{2N}a_n&=\left(-a_1+a_2-a_3+ \cdots-a_{2N-1}+a_{2N}\right)+\left(a_1+a_2+a_3+ \cdots+a_{2N-1}+a_{2N}\right)\\
&=2a_2+2a_4+ \cdots+2a_{2N}\\
&=2\sum_{n=1}^{N}a_{2n} \qquad \blacksquare
\end{aligned}


Claim:

\sum_{n=1}^{\infty}\frac{(-1)^n\ln(n)}{n}=\gamma\ln(2)-\frac{\ln^2(2)}{2}(2)


If we let  a_n=\frac{\ln(n)}{n}  in (1) we get



\begin{aligned}
\sum_{n=1}^{2N}\frac{(-1)^n\ln(n)}{n}&=2\sum_{n=1}^{N}\frac{\ln(2n)}{2n}-\sum_{n=1}^{2N}\frac{\ln(n)}{n}\\
&=\ln(2)\sum_{n=1}^{N}\frac{1}{n}+\sum_{n=1}^{N}\frac{\ln(n)}{n}-\sum_{n=1}^{2N}\frac{\ln(n)}{n}\\
&=\ln(2)\operatorname{H}_N+\sum_{n=1}^{N}\frac{\ln(n)}{n}-\sum_{n=1}^{2N}\frac{\ln(n)}{n}\\
\end{aligned}(3)

Lets now recall the Euler Maclaurin Formula (proved here) to estimate the last two sums above


\sum_{k=m}^nf(k)=f(m)+\int_m^n f(x)\,dx+\int_m^n f^\prime(x)P_1(x)\,dx(4)


Choosing f(x)=\frac{\ln(x)}{x}   and    f^\prime(x)=\frac{1-\ln(x)}{x^2}    in (4), we get for the first sum :



\begin{aligned}
\sum_{n=1}^{N}\frac{\ln(n)}{n}&=\frac{\ln(1)}{1}+\int_1^N\frac{\ln(x)}{x}\,dx+\int_1^N\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx\\
&=\frac{\ln^2(N)}{2}+\int_1^N\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx
\end{aligned}(5)


And for the second sum


\begin{aligned}
\sum_{n=1}^{N}\frac{\ln(n)}{n}&=\frac{\ln(1)}{1}+\int_1^N\frac{\ln(x)}{x}\,dx+\int_1^N\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx\\
&=\frac{\ln^2(2N)}{2}+\int_1^{2N}\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx\\
&=\frac{\ln^2(2)}{2}+\ln(2)\ln(N)+\frac{\ln^2(N)}{2}+\int_1^{2N}\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx\\
\end{aligned}(6)


Recall also the integral representation of the Stiltjies constant (shown here):

\gamma_n=\int_1^\infty \frac{\left\{ x\right\}}{x^2} \left(n-\ln(x) \right)\ln^{n-1}(x)\,dx(7)


letting n=1 in (7) we obtain


\gamma_1=\int_1^\infty \frac{\left\{ x\right\}}{x^2} \left(1-\ln(x) \right)\,dx(8)


Now, plugging (5) and (6) back in (3) and letting N \to \infty we obtain



\begin{aligned}
\sum_{n=1}^{\infty}\frac{(-1)^n\ln(n)}{n}&=\lim_{N \to \infty}\left[\ln(2)\operatorname{H}_N+ \frac{\ln^2(N)}{2}+\int_1^N\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx \right] \\ 
& \qquad \qquad-\frac{\ln^2(2)}{2}-\lim_{N \to \infty}\left[\ln(2)\ln(N)-\frac{\ln^2(N)}{2}-\int_1^{2N}\frac{\{x\}}{x^2}\left( 1-\ln(x)\right)\,dx \right] \\
&=\ln(2)\lim_{N \to \infty}\left[\operatorname{H}_N-\ln(N) \right]-\frac{\ln^2(2)}{2}+\gamma_1-\gamma_1 & (\text{by eq.(8) above}) \\
&=\gamma\ln(2)-\frac{\ln^2(2)}{2} \qquad \blacksquare
\end{aligned}


We can now use (2) to calculate the following integral


\int_0^\infty \frac{x\ln(x)}{e^{x^2}+1}\,dx=-\frac{\ln^2(2)}{8}

Proof:

\begin{aligned}
I&=\int_0^\infty \frac{x\ln(x)}{e^{x^2}+1}\,dx\\
&=\frac14\int_0^\infty \frac{\ln(x)}{e^{x}+1}\,dx \qquad (x^2 \to x)\\
&=\frac14\int_0^\infty \frac{e^{-x}\ln(x)}{e^{-x}+1}\,dx\\
&=\frac14\int_0^\infty e^{-x}\ln(x)\left(\sum_{k=0}^\infty(-1)^ke^{-kx}\right)\,dx\\
&=\frac14\sum_{k=1}^\infty(-1)^{k-1}\,\int_0^\infty e^{-kx}\ln(x)\,dx\\
&=\frac14\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}\,\int_0^\infty e^{-x}\ln\left(\frac xk\right)\,dx\\
&=\frac14\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}\,\int_0^\infty e^{-x}\ln\left( x\right)\,dx-\frac14\sum_{k=1}^\infty \frac{(-1)^{k-1} \ln(k)}{k}\int_0^\infty e^{-x}\,dx\\
&=-\frac{\gamma}{4}\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}+\frac14\eta^\prime(1)\\
&=-\frac{\gamma}{4}\ln(2)+\frac14\eta^\prime(1)\\
&=\frac14\left(\gamma\ln(2)-\frac{\ln^2(2)}{2} \right)-\frac{\gamma}{4}\ln(2)\\
&=-\frac{\ln^2(2)}{8} \qquad \blacksquare
\end{aligned}


Comments

Popular posts from this blog