An Alternating Euler Sum

In today´s post we will compute the amazing alternate infinite sum


\sum_{n=1}^\infty\frac{(-1)^{n}\text{H}_n}{n^3}=-\frac{11 \pi^4}{360}+2\text{Li}_4\left(\frac12\right)+\frac{7\ln(2)\zeta(3)}{4}+\frac{\ln^4(2)}{12} -\frac{\ln^2(2)\pi^2}{12}




\begin{aligned}
\sum_{n=1}^\infty\frac{(-1)^{n}\text{H}_n}{n^3}&=\sum_{n=1}^\infty (-1)^{n}\text{H}_n \left( \frac12 \int_0^1x^{n-1}\ln^2(x)\,dx\right)\\
&=  \frac12 \int_0^1 \left(\sum_{n=1}^\infty (-1)^{n}\text{H}_nx^{n-1} \right)\ln^2(x)\,dx\\
&=  \frac12 \int_0^1 \left(\sum_{n=1}^\infty (-1)^{n}\text{H}_nx^{n} \right)\frac{\ln^2(x)}{x}\,dx\\
&=  -\frac12 \int_0^1 \left(\frac{\ln(1-(-x))}{1-(-x)} \right)\frac{\ln^2(x)}{x}\,dx \qquad (*)\\
&= - \frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{x(1+x)} \,dx\\
&=\frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{1+x} \,dx-  \frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{x} \,dx\\
&=-\frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{x} \,dx+  \frac12\left( \int_0^{1/2} \frac{\ln^2\left(\frac{x}{1-x}\right)\ln\left(\frac{1}{1-x}\right)}{\frac{1}{1-x}} \,\frac{dx}{(1-x)^2}\right) \qquad \left(x \to \frac{x}{1-x} \right)\\
&=-\frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{x} \,dx+  \frac12\left(\int_0^{1/2} \frac{\left(\ln(x)-\ln(1-x) \right)^2\left(-\ln(1-x) \right)}{1-x} \,dx\right)\\
&=-\frac12 \int_0^1 \frac{\ln^2(x)\ln(1+x)}{x} \,dx+  \frac12\left(-\int_0^{1/2} \frac{\ln^2(x)\ln(1-x) }{1-x} \,dx +2\int_0^{1/2} \frac{\ln(x)\ln^2(1-x) }{1-x} \,dx-\int_0^{1/2} \frac{\ln^3(1-x) }{1-x} \,dx\right)\\
&=-\frac12 I_1+  \frac12\left(-I_2 +2I_3-I_4\right)\\
&=-\frac12\left(\frac74\zeta(4) \right)+ \frac12\left( \frac{\ln^4(2)}{4}+\frac14\zeta(4)+2\left(2\text{Li}_4\left(\frac12\right)-\frac{\ln^2(2)\zeta(2)}{2}+\frac{7\ln(2) \zeta(3)}{4}-2\zeta(4)-\frac{\ln^4(2)}{6}  \right)+\frac{\ln^4(2)}{4}\right)\\
&=-\frac78\zeta(4) +  \frac12\left(4\text{Li}_4\left(\frac12\right)-\frac{15}{4}\zeta(4)+\frac{7\ln(2)\zeta(3)}{2}-\ln^2(2)\zeta(2)+\frac{\ln^4(2)}{6}\right)\\
&=-\frac{11 \pi^4}{360}+2\text{Li}_4\left(\frac12\right)+\frac{7\ln(2)\zeta(3)}{4}+\frac{\ln^4(2)}{12} -\frac{\ln^2(2)\pi^2}{12}\qquad \blacksquare
\end{aligned}


Where in (*) we used the generating function previously proved here


\sum_{n=1}^\infty\text{H}_nx^n=-\frac{\ln(1-x)}{1-x}


Evaluation of  I_1

\begin{aligned}
I_1&=\int_0^1 \frac{\ln^2(x)\ln(1+x)}{x} \,dx\\
&=\int_0^1 \frac{\ln^2(x)}{x}\left(\sum_{k=1}^\infty(-1)^{k-1}\frac{x^k}{k} \right)\,dx\\
&=\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k}\int_0^1 x^{k-1}\ln^2(x)\,dx\\
&=\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k}\left(\frac{(-1)^22!}{(k-1+1)^{2+1}} \right)\\
&=2\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k^4}\\
&=2\eta(4)\\
&=2(1-2^{1-4})\zeta(4)\\
&=2\,\frac78\zeta(4)\\
&=\frac74\zeta(4) \qquad \blacksquare
\end{aligned}



Evaluation of I_2



\begin{aligned}
I_2&=\int_0^{1/2}\frac{\ln^2(x)\ln(1-x)}{1-x}\,dx
=uv-\int v du
\\&=-\frac{\ln^2(x)\ln(1-x)}{2}\Big|_0^{1/2}+\int_0^{1/2}\frac{\ln(x)\ln^2(1-x)}{x}\,dx\\
&=-\frac{\ln^4(2)}{2}+\int_{1/2}^{1}\frac{\ln^2(x)\ln(1-x)}{1-x}\,dx \qquad \left(x \to 1-x \right)\\
&=-\frac{\ln^4(2)}{4}+\frac12\int_{0}^{1}\frac{\ln^2(x)\ln(1-x)}{1-x}\,dx \qquad \left( \text{by adding } \int_0^{1/2} \text{to both sides} \right)\\
&=-\frac{\ln^4(2)}{4}-\frac14\zeta(4)\qquad \blacksquare\\
\end{aligned}


Where we used the following result


\begin{aligned}
\int_0^1\frac{\ln^2(x)\ln(1-x)}{1-x}\,dx&=-\int_0^1\ln^2(x)\left(\sum_{n=1}^\infty \text{H}_{n-1}x^{n-1}
 \right) \,dx\\
&=-\sum_{n=1}^\infty \text{H}_{n-1} \int_0^1 x^{n-1} \ln^2(x)\,dx\\
&=-\sum_{n=1}^\infty \left(\text{H}_{n}-\frac1n \right)\left( \frac{2}{n^3}\right)\\
&=-2\left(\sum_{n=1}^\infty \frac{\text{H}_{n}}{n^3}-\sum_{n=1}^\infty\frac1{n^4} \right)\\
&=-2\left(\frac{\zeta^2(2)}{2}-\zeta(4) \right)\\
&=2\zeta(4)-\zeta^2(2) \\
&= 2\frac{\pi^4}{90}-\frac{\pi^4}{36}\\
&=-\frac{\pi^4}{180}\\
&=-\frac12\frac{}{}\zeta(4)\qquad \blacksquare\\
\end{aligned}


Evaluation of I_3


\begin{aligned}
I_3&=\int_0^{1/2}\frac{\ln(x)\ln^2(1-x)}{1-x}\,dx\\&=uv-\int v\,du\\
&=-\frac{\ln(x)\ln^3(1-x)}{3}\Big|_0^{1/2}+\frac13\int_0^{1/2}\frac{\ln^3(1-x)}{x}\,dx \qquad \left(u=\ln(x) \,\,dv=\frac{\ln^2(1-x)}{1-x}\,dx \right)\\
&=-\frac{\ln^4(2)}{3}+\frac13 \int_{1/2}^{1}\frac{\ln^3(x)}{1-x}\,dx \qquad \left( 1-x \to x\right)\\
&=-\frac{\ln^4(2)}{3}+\frac13 \int_{0}^{1}\frac{\ln^3(x)}{1-x}\,dx-\frac13 \int_{0}^{1/2}\frac{\ln^3(x)}{1-x}\,dx\\
&=-\frac{\ln^4(2)}{3}+\frac13 \left(-\frac{\pi^4}{15} \right)-\frac13 \left(-6\text{Li}_4\left(\frac12\right)-\frac{21\ln(2) \zeta(3)}{4}+\frac{\pi^2\ln^2(2)}{4}-\frac{\ln^4(2)}{2} \right)\\
&=2\text{Li}_4\left(\frac12\right)-\frac{\ln^2(2)\zeta(2)}{2}+\frac{7\ln(2) \zeta(3)}{4}-2\zeta(4)-\frac{\ln^4(2)}{6} \qquad \blacksquare
\end{aligned}


Where We used the previously proved results


\begin{aligned}
&\int_0^{1}\frac{\ln^3(x)}{1-x}\,dx=-\frac{\pi^4}{15}\\
& \\
&\int_0^{1/2}\frac{\ln^3(x)}{1-x}\,dx=-6\text{Li}_4\left(\frac12\right)-\frac{21\ln(2) \zeta(3)}{4}+\frac{\pi^2\ln^2(2)}{4}-\frac{\ln^4(2)}{2}
\end{aligned}



Evaluation of I_4


\begin{aligned}
\int\frac{\ln^3(1-x)}{1-x}\,dx&=-\int\frac{\ln^3(w)}{w}\,dw \qquad \left( \text{by} \,\,1-x=w\right)\\
&=-\left(\ln^4(w)- \int\frac{\ln^3(w)}{w}\,dw\right)\\
&=-\frac{\ln^4(w)}{4}\\
&=-\frac{\ln^4(1-x)}{4}\\
& \\
I_4&=\int_0^{1/2}\frac{\ln^3(1-x)}{1-x}\,dx\\
&=-\frac{\ln^4(1-x)}{4}\Big|_0^{1/2}\\
&=-\frac{\ln^4(2)}{4} \qquad \blacksquare
\end{aligned}


Appendix

\frac{(-1)^{k-1}}{\Gamma(k)}\int_0^1x^{n-1}\ln^{k-1}(x)\,dx=\frac{1}{n^k}

Proof:

We start from


\begin{aligned}
\frac{1}{\Gamma(k)}\int_0^\infty e^{-nx}x^{k-1}\,dx&=\frac{1}{\Gamma(k)}\int_0^\infty e^{-x}\left(\frac{x}{n}\right)^{k-1}\,\frac{dx}{n}\\
&=\frac{1}{\Gamma(k) n^k}\int_0^\infty e^{-x}x^{k-1}\,dx\\
&=\frac{\Gamma(k)}{\Gamma(k) n^k}\\
&=\frac{1}{ n^k}
\end{aligned}

On the other hand


\begin{aligned}
\frac{1}{\Gamma(n)}\int_0^\infty e^{-nx}x^{k-1}\,dx&=\frac{1}{\Gamma(n)}\int_1^0 e^{n\ln(x)}\left(-\ln(x)\right)^{k-1}\,\frac{(-dx)}{x} \qquad \left(x \to -\ln(x) \right)\\
&=\frac{(-1)^{k-1}}{\Gamma(n)}\int_0^1x^{n-1}\ln^{k-1}(x)\,dx
\end{aligned}


Equating both equations we obtain the desired result




Comments

Popular posts from this blog