Some Integrals Related to Catalan´s constant

            In this post We will proof the following integrals related to the Catalan´s Constant. The proofs are based on the following paper: Representations of Catalan’s constant, David Bradley, 2001


\begin{aligned}
& \int_0^{1}\frac{\ln(x)}{1+x^2}\,dx=-\beta(2)\\
& \int_0^{\pi/4}\ln\left(\tan\left(x\right) \right)\,dx=-\beta(2)\\
& \int_0^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx=-\frac13\beta(2)\\
&\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx=-\frac23\beta(2) \\
& \int_0^{2-\sqrt{3}}\frac{\ln(x)}{1+x^2}\,dx=-\frac23\beta(2) \\
& \int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx=\frac23\beta(2)-\frac{\pi}{12}\ln\left(2+\sqrt{3} \right)\\
& \int_0^{\pi/6}\frac{x}{\sin\left(x\right)}\,dx=\frac43\beta(2)-\frac{\pi}{6}\ln\left(2+\sqrt{3} \right)
\end{aligned}



\int_0^{1}\frac{\ln(x)}{1+x^2}\,dx=-\beta(2)(1)

Proof:


\begin{aligned}
\int_0^{1}\frac{\ln(x)}{1+x^2}\,dx&=\int_0^{1}\ln(x)\left(\sum_{k=0}^\infty(-1)^kx^{2k} \right)\,dx\\
&=\sum_{k=0}^\infty(-1)^k\int_0^{1}x^{2k}\ln(x)\,dx\\
&=\sum_{k=0}^\infty(-1)^k\left(\frac{\ln(x)x^{2k+1}}{2k+1}\Big|_0^1-\frac{1}{2k+1}\int_0^{1}x^{2k}\,dx\right)\\
&=\sum_{k=0}^\infty(-1)^k\left(-\frac{1}{(2k+1)^2}\right)\\
&=-\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2 }\\
&=-\beta(2) \qquad \blacksquare
\end{aligned}



\int_0^{\pi/4}\ln\left(\tan\left(x\right) \right)\,dx=-\beta(2)(2)

Proof:


\begin{aligned}
\int_0^{\pi/4}\ln\left(\tan\left(x\right) \right)\,dx&=\int_0^1\frac{\ln(x)}{1+x^2}\,dx &(\tan(x) \to x)\\
&=-\beta(2)
\end{aligned}


\int_0^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx=-\frac13\beta(2)(3)

Proof:

\begin{aligned}
\int_0^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx&=\frac13\int_0^{\pi/4}\ln\left(\tan\left(x\right) \right)\,dx\\
&=-\frac13\beta(2) \qquad \blacksquare\\
\end{aligned}


\int_0^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx=\frac12\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx(4)

Proof:


By equation (A.7) of the appendix we have


\ln\left(\tan\left(3x\right) \right)=\ln\left(\tan\left(x\right) \right)+\ln\left(\tan\left(\frac{\pi}{3}+x\right) \right)+\ln\left(\tan\left(\frac{\pi}{3}-x\right) \right)


Than, we can rewrite our itegral as


\begin{aligned}
\int_0^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_0^{\pi/12}\ln\left(\tan\left(\frac{\pi}{3}+x\right) \right)\,dx+\int_0^{\pi/12}\ln\left(\tan\left(\frac{\pi}{3}-x\right) \right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/3}^{5\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/3}^{\pi/4}\ln\left(\tan\left(x\right) \right)\,(-dx)\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/3}^{5\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/4}^{\pi/3}\ln\left(\tan\left(x\right) \right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/4}^{5\pi/12}\ln\left(\tan\left(x\right) \right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/4}^{\pi/12}\ln\left(\tan\left(\frac{\pi}{2}-x\right) \right)\,(-dx)\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx-\int_{\pi/4}^{\pi/12}\ln\left(\cot\left(x\right) \right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx-\int_{\pi/4}^{\pi/12}\ln\left(\frac{1}{\tan(x)}\right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_{\pi/4}^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx\\
&=\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx+\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx-\int_{0}^{\pi/4}\ln\left(\tan\left(x\right) \right)\,dx\\
&=2\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx-3\int_{0}^{\pi/12}\ln\left(\tan\left(3x\right) \right)\,dx\\
&=\frac12\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx \qquad \blacksquare\\
\end{aligned}


Equating (3) and (4) we conclude that


\int_0^{\pi/12}\ln\left(\tan\left(x\right) \right)\,dx=-\frac23\beta(2)(5)


Letting \tan(x) \to x in (5) we obtain


\int_0^{2-\sqrt{3}}\frac{\ln(x)}{1+x^2}\,dx=-\frac23\beta(2)(6)


We can Integrate by part (6) to get


\begin{aligned}
\int_0^{2-\sqrt{3}}\frac{\ln(x)}{1+x^2}\,dx&=\ln(x)\arctan(x)\Big|_0^{2-\sqrt{3}}-\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx\\
&=\frac{\pi}{12}\ln\left(2-\sqrt{3} \right)-\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx\\
&=-\frac{\pi}{12}\ln\left(\frac{1}{2-\sqrt{3}} \right)-\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx\\
&=-\frac{\pi}{12}\ln\left(\frac{1}{2-\sqrt{3}} \cdot \frac{2+\sqrt{3}}{2+\sqrt{3}} \right)-\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx\\
&=-\frac{\pi}{12}\ln\left(2+\sqrt{3} \right)-\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx\\
\end{aligned}


And from (6) we conclude that


\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx=\frac23\beta(2)-\frac{\pi}{12}\ln\left(2+\sqrt{3} \right)(7)


Now, let x \to \tan\left( \frac{x}{2}\right) in (7)


\begin{aligned}
\int_0^{2-\sqrt{3}}\frac{\arctan(x)}{x}\,dx&=\int_0^{\pi/6}\frac{\frac{x}{2}}{\tan\left( \frac{x}{2}\right)}\sec^2\left( \frac{x}{2}\right)\,\frac{dx}{2}\\
&=\frac12\int_0^{\pi/6}\frac{x}{\frac{2\sin\left( \frac{x}{2}\right)\cos^2\left( \frac{x}{2}\right)}{\cos\left( \frac{x}{2}\right)}}\,dx\\
&=\frac12\int_0^{\pi/6}\frac{x}{\sin\left(x\right)}\,dx\\
\end{aligned}

Ans from (7) we conclude that


\int_0^{\pi/6}\frac{x}{\sin\left(x\right)}\,dx=\frac43\beta(2)-\frac{\pi}{6}\ln\left(2+\sqrt{3} \right)(8)


Appendix

\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}(A.1)

Proof:


Recall the addition formulas of sine and cosine (see here)


\sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x)(A.2)

\cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y)(A.3)

\begin{aligned}
\tan(x+y)&=\frac{\sin(x+y)}{\cos(x+y)}\\
&=\frac{\sin(x)\cos(y)+\sin(y)\cos(x)}{\cos(x)\cos(y)-\sin(x)\sin(y)}\\
&=\frac{\sin(x)\cos(y)+\sin(y)\cos(x)}{\cos(x)\cos(y)-\sin(x)\sin(y)}\cdot \frac{\frac{1}{\cos(x)\cos(y)}}{\frac{1}{\cos(x)\cos(y)}}\\
&=\frac{\frac{\sin(x)\cos(y)+\sin(y)\cos(x)}{\cos(x)\cos(y)}}{\frac{\cos(x)\cos(y)-\sin(x)\sin(y)}{\cos(x)\cos(y)}}\\
&=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)} \qquad \blacksquare
\end{aligned}

Examples:

\begin{aligned}
\tan\left(\frac{\pi}{12}\right)&=\tan\left(\frac{\pi}{3}-\frac{\pi}{4}\right)\\
&=\tan\left(\frac{\pi}{3}+\left(-\frac{\pi}{4}\right)\right)\\
&=\frac{\tan\left(\frac{\pi}{3}\right)+\tan\left(-\frac{\pi}{4}\right)}{1-\tan\left(\frac{\pi}{3}\right)\tan\left(-\frac{\pi}{4}\right)}\\
&=\frac{\sqrt{3}-1}{1+\sqrt{3}} \\
&=\frac{\sqrt{3}-1}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1}\\
&=\frac{4-2\sqrt{3}}{2}\\
&=2-\sqrt{3}\qquad \blacksquare
\end{aligned}


Another two examples that will be useful in the next proof


\begin{aligned}
\tan\left(\frac{\pi}{3}-x\right)
&=\tan\left(\frac{\pi}{3}+\left(-x\right)\right)\\
&=\frac{\tan\left(\frac{\pi}{3}\right)+\tan\left(-x\right)}{1-\tan\left(\frac{\pi}{3}\right)\tan\left(-x\right)}\\
&=\frac{\sqrt{3}-\tan(x)}{1+\sqrt{3}\tan(x)} \\
\end{aligned}

\begin{aligned}
\tan\left(\frac{\pi}{3}+x\right)
&=\frac{\tan\left(\frac{\pi}{3}\right)+\tan\left(x\right)}{1-\tan\left(\frac{\pi}{3}\right)\tan\left(x\right)}\\
&=\frac{\sqrt{3}+\tan(x)}{1-\sqrt{3}\tan(x)} \\
\end{aligned}


\tan(2x)=\frac{2\tan(x)}{1-\tan^2(x)}(A.4)

Proof:


Recall the double angle formulas (see here):


\sin(2x)=2\sin(x)\cos(x)(A.5)

\cos(2x)=\cos^2(x)-\sin^2(x)(A.6)

Than

\begin{aligned}
\tan(2x)&=\frac{2\sin(x)\cos(x)}{\cos^2(x)-\sin^2(x)}\\
&=\frac{2\sin(x)\cos(x)}{\cos^2(x)-\sin^2(x)} \cdot \frac{\frac{1}{\cos^2(x)}}{\frac{1}{\cos^2(x)}}\\
&=\frac{2\tan(x)}{1-\tan^2(x)} \qquad \blacksquare
\end{aligned}


\tan(3x)=\tan(x)\tan\left(\frac{\pi}{3}+x\right)\tan\left(\frac{\pi}{3}-x\right)(A.7)

Proof:


\begin{aligned}
\tan\left(3x\right)&=\tan\left(2x+x\right)\\
&=\frac{\tan(2x)+\tan(x)}{1-\tan(2x)\tan(x)}\\
&=\frac{\frac{2\tan(x)}{1-\tan^2(x)}+\tan(x)}{1-\frac{2\tan(x)}{1-\tan^2(x)}\tan(x)}\\
&=\frac{2\tan(x)+\tan(x)-\tan^3(x)}{1-\tan^2(x)-2\tan^2(x)}\\
&=\frac{3\tan(x)-\tan^3(x)}{1-3\tan^2(x)}\\
&=\tan(x)\left(\frac{3-\tan^2(x)}{1-3\tan^2(x)}\right)\\
&=\tan(x)\left(\frac{\sqrt{3}+\tan(x)}{1-\sqrt{3}\tan(x)}\right)\left(\frac{\sqrt{3}-\tan(x)}{1+\sqrt{3}\tan(x)}\right)\\
&=\tan(x)\tan\left(\frac{\pi}{3}+x\right)\tan\left(\frac{\pi}{3}-x\right) \qquad \blacksquare
\end{aligned}


Reference

Representations of Catalan’s constant, David Bradley, 2001

Comments

Popular posts from this blog