Hjortnes series for zeta(3)

        In this post We will derive the remarkable beatiful Hjortnes series used by Apery to prove the irrationality of zeta(3)


\zeta(3)=\frac52\sum_{n=1}^\infty \,\frac{ (-1)^{n-1}}{n^3\left(\begin{array}{c}2n\\ n\end{array}\right)}



Recall (proved here)

\arcsin^2(x)=\frac12\sum_{n=1}^\infty\frac{ 4^{n}}{\left(\begin{array}{c}2n\\ n\end{array}\right)}\frac{x^{2n}}{n^2}(1)


Letting x \to ix in (1) and using the fact that  \arcsin(ix)=i\,\operatorname{arcsinh}(x) we obtain


\operatorname{arcsinh}^2(x)=-\frac12\sum_{n=1}^\infty\frac{ 4^{n}(-1)^n}{\left(\begin{array}{c}2n\\ n\end{array}\right)}\frac{x^{2n}}{n^2}(2)

Proof:

\begin{aligned}
&\left(\arcsin(ix)\right)^2=\frac12\sum_{n=1}^\infty\frac{ 4^{n}}{\left(\begin{array}{c}2n\\ n\end{array}\right)}\frac{(ix)^{2n}}{n^2}\\
&\left(i\operatorname{arcsinh}(x)\right)^2=\frac12\sum_{n=1}^\infty\frac{ 4^{n}(-1)^n}{\left(\begin{array}{c}2n\\ n\end{array}\right)}\frac{x^{2n}}{n^2}\\
&\operatorname{arcsinh}^2(x)=-\frac12\sum_{n=1}^\infty\frac{ 4^{n}(-1)^n}{\left(\begin{array}{c}2n\\ n\end{array}\right)}\frac{x^{2n}}{n^2} \qquad \blacksquare\\
\end{aligned}


Dividing (2) by x and integrating from 0 to 1/2 we obtain


\sum_{n=1}^\infty \,\frac{ (-1)^{n-1}}{n^3\left(\begin{array}{c}2n\\ n\end{array}\right)}=4\int_0^{1/2}\frac{\operatorname{arcsinh}^2(x)}{x}\,dx(3)


Let´s now focus on the R.H.S. of (3)


\begin{aligned}
4\int_0^{1/2}\frac{\operatorname{arcsinh}^2(x)}{x}\,dx&=4\int_0^{\ln(\phi)}\frac{x^2\cosh(x)}{\sinh(x)}\,dx \qquad \left( \operatorname{arcsinh}(x) \to x \right)\\
&=4\int_0^{\ln(\phi)}\frac{x^2\left(e^{x}+e^{-x} \right)}{\left(e^{x}-e^{-x} \right)}\,dx \\
&=4\int_0^{\ln(\phi)}\frac{x^2\left(e^{2x}+1 \right)}{\left(e^{2x}-1 \right)}\,dx \\
&=4\int_0^{\ln(\phi)}x^2\left(\frac{e^{2x}+1+1-1 }{e^{2x}-1 }\right)\,dx \\
&=4\int_0^{\ln(\phi)}x^2\left(\frac{2 }{e^{2x}-1 }+1\right)\,dx \\
&=\frac{4\ln^3(\phi)}{3}+8\int_0^{\ln(\phi)}\frac{x^2 }{e^{2x}-1 }\,dx \\
&=\frac{4\ln^3(\phi)}{3}+\int_0^{2\ln(\phi)}\frac{x^2 }{e^{x}-1 }\,dx  \qquad \left(2x \to x \right)\\
&=\frac{4\ln^3(\phi)}{3}+\int_1^{\phi^{-2}}\frac{\left(-\ln(x)\right)^2 }{\frac{1}{x}-1 }\,\frac{dx}{x}  \qquad \left(x \to -\ln(x) \right)\\
&=\frac{4\ln^3(\phi)}{3}+\int_{\phi^{-2}}^1\frac{\ln^2(x) }{1-x }\,dx\\
&=\frac{4\ln^3(\phi)}{3}+\int_0^{1}\frac{\ln^2(x) }{1-x }\,dx-\int_0^{\phi^{-2}}\frac{\ln^2(x) }{1-x }\,dx\\
&=\frac{4\ln^3(\phi)}{3}+2\zeta(3)-\int_0^{\phi^{-2}}\frac{\ln^2(x) }{1-x }\,dx\\
&=\frac{4\ln^3(\phi)}{3}+2\zeta(3)-\left[2\operatorname{Li}_{3}(x)-2\ln(x)\operatorname{Li}_2(x)-\ln(1-x)\ln^2(x) \right]_0^{\phi^{-2}} \qquad \left( \text{equation (A.8)}\right)\\
&=\frac{4\ln^3(\phi)}{3}+2\zeta(3)-\left[2\operatorname{Li}_{3}(\phi^{-2})-2\ln(\phi^{-2})\operatorname{Li}_2(\phi^{-2})-\ln(1-\phi^{-2})\ln^2(\phi^{-2}) \right]\\
&=\frac{4\ln^3(\phi)}{3}+2\zeta(3)-2\left( \frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15}\right)-4\ln(\phi)\left(\frac{\pi^{2}}{15}-\ln ^{2} (\phi) \right)-4\ln^3(\phi)\\
&=2\zeta(3)-\frac{8}{5}\zeta(3)\\
&=\frac{2}{5}\zeta(3) \qquad \blacksquare
\end{aligned}


Plugging the result of the integral back in (3) we obtain the remarkable result


\zeta(3)=\frac52\sum_{n=1}^\infty \,\frac{ (-1)^{n-1}}{n^3\left(\begin{array}{c}2n\\ n\end{array}\right)}


Appendix 1

Recall the following relations regarding the Golden Ratio


\phi=\frac{1+\sqrt{5}}{2}

\begin{gathered}
\phi=\frac{1}{\phi}+1, \quad \phi^{2}=\phi+1 \\
\phi^{-2}+\phi^{-1}=1 \Rightarrow \frac{1}{\phi^{2}}=1-\frac{1}{\phi}
\end{gathered}(A.1)


We have proven the following relation in this post


\begin{aligned}
\mathrm{Li}_{2}\left(\frac{1}{\phi}\right) &=\frac{\pi^{2}}{10}-\ln ^{2} \phi \\
\mathrm{Li}_{2}\left(-\frac{1}{\phi}\right) &=\frac{\ln ^{2} \phi}{2}-\frac{\pi^{2}}{15} \\
\mathrm{Li}_{2}\left(\frac{1}{\phi^{2}}\right) &=\frac{\pi^{2}}{15}-\ln ^{2} \phi
\end{aligned}(A.2)


Also, recall the Trilogarithm identity proved here


\operatorname{Li}_{3}(x)+\operatorname{Li}_{3}(1-x)+\operatorname{Li}_{3}\left(1-\frac{1}{x}\right)=\zeta(3)+\frac{\ln ^{3}(x)}{6}+\frac{\pi^{2} \ln (x)}{6}-\frac{\ln ^{2}(x) \ln (1-x)}{2}(A.3)


And the Polylogarithm relation proved here


\operatorname{Li}_{n}(x)+\operatorname{Li}_{n}(-x)=2^{1-n}\operatorname{Li}_{n}(x^2)(A.4)


Example, letting x=\phi^{-1} in (A.4) we obtain


\operatorname{Li}_{n}(\phi^{-1})+\operatorname{Li}_{n}(-\phi^{-1})=\frac14\operatorname{Li}_{n}(\phi^{-2})(A.5)

Claim:

\operatorname{Li}_{3}\left(\frac{1}{\phi^{2}}\right)=\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15}(A.6)

Proof:

If we let x=\phi^{-1} in (1) we obtain


\begin{aligned}
&\operatorname{Li}_{3}\left(\phi^{-1}\right)+\operatorname{Li}_{3}(1-\phi^{-1})+\operatorname{Li}_{3}\left(1-\frac{1}{\phi^{-1}}\right)=\zeta(3)-\frac{\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6}-\frac{\ln ^{2}(\phi) \ln (1-\phi^{-1})}{2}\\
&\operatorname{Li}_{3}\left(\phi^{-1}\right)+\operatorname{Li}_{3}(\phi^{-2})+\operatorname{Li}_{3}\left(-\phi^{-1}}\right)=\zeta(3)-\frac{\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6}-\frac{\ln ^{2}(\phi) \ln (\phi^{-2})}{2}\\
&\frac14\operatorname{Li}_{3}\left(\phi^{-2}\right)+\operatorname{Li}_{3}(\phi^{-2})=\zeta(3)-\frac{\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6}+\ln ^{3}(\phi) \\
&\frac54\operatorname{Li}_{3}\left(\phi^{-2}\right)=\zeta(3)+\frac{5\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6} \\
&\operatorname{Li}_{3}\left(\phi^{-2}\right)=\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15} \qquad \blacksquare \\
\end{aligned}


Appendix 2


\begin{aligned}
\operatorname{Li}_{3}(x)&=\int_0^x\frac{\operatorname{Li}_{2}(t)}{t}\,dt\\
&=-\int_0^x\frac{1}{t}\left(\int_0^t\frac{\ln(1-w)}{w}\,dw \right)\,dt \qquad \left(\operatorname{Li}_{2}(t)=-\int_0^t\frac{\ln(1-w)}{w}\,dw \right)\\
&=-\int_0^x \frac{\ln(1-w)}{w}\left(\int_w^x\frac{dt}{t} \right)\,dw \qquad \text{switched order of integration}\\
&=-\int_0^x \frac{\ln(1-w)}{w}\left(\ln(x)-\ln(w) \right)\,dw\\
&=\int_0^x \frac{\ln(1-w)\ln(w)}{w}\,dw-\ln(x)\int_0^x \frac{\ln(1-w)}{w}\,dw\\
&=\int_0^x \frac{\ln(1-w)\ln(w)}{w}\,dw+\ln(x)\operatorname{Li}_2(x)
\end{aligned}


And we get


\int_0^x \frac{\ln(1-w)\ln(w)}{w}\,dw=\operatorname{Li}_{3}(x)-\ln(x)\operatorname{Li}_2(x)(A.7)


Now we focus on the integral on the L.H.S.


\begin{aligned}
\int_0^x \frac{\ln(1-w)\ln(w)}{w}\,dw&=uv-\int v \,du\\
&=\frac{\ln(1-w)\ln^2(w)}{2}\Big|_0^x+\frac12\int_0^x\frac{\ln^2(w)}{1-w}\,dw\\
&=\frac{\ln(1-x)\ln^2(x)}{2}+\frac12\int_0^x\frac{\ln^2(w)}{1-w}\,dw\\
\end{aligned}

Plugging this result back in (A.7) we obtain


\int_0^x\frac{\ln^2(w)}{1-w}\,dw=2\operatorname{Li}_{3}(x)-2\ln(x)\operatorname{Li}_2(x)-\ln(1-x)\ln^2(x)(A.8)


Example, letting x=1 in (A.8) we obtain


\int_0^1\frac{\ln^2(w)}{1-w}\,dw=2\operatorname{Li}_{3}(1)=2\zeta(3)


Reference

POLYLOGARITHMS, MULTIPLE ZETA VALUES, AND THE SERIES OF HJORTNAES AND COMTET Notes by Tim Jameson (December 2009)

Comments

Popular posts from this blog

HARD INTEGRAL - PART II