A Ramanujan Series

In this article we prove the following Ramanujan series


\begin{align*}
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^3 \sinh n \pi}=-\frac{\pi^3}{360} \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^7 \sinh n \pi}=-\frac{13 \pi^7}{453600} \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{11} \sinh n \pi}=-\frac{4009 \pi^{11}}{13621608000}
\end{align*}



To this end we will rely on the residues theorem. 

Click here  for the proof of the Ramanujan´s series

Comments

Popular posts from this blog

HARD INTEGRAL - PART II