Series involving central binomial coefficient squared

In this blog entry we will evaluate the beautiful series below involving the square of the central binomial coefficient

\begin{align*}
\sum_{n=1}^\infty \frac{\binom{2n}{n}^2}{ 2^{4n} n}&=4 \ln(2)-\frac{8G}{\pi}
\end{align*}

Click here to see the proof

We used the previous result

\begin{align*}
\sum_{n=1}^\infty \binom{2n}{n}\frac{x^n}{ 2^{2n} n}&=2\ln\left(\frac{2}{1+\sqrt{1-x}} \right)
\end{align*}

proved here

Comments

Popular posts from this blog

HARD INTEGRAL - PART II