Central Binomial representation for zeta(2)

In this post we will prove the following nice series representation for \zeta(2):


\begin{align*}
\zeta(2)=\frac53 \sum_{n=0}^\infty \frac{(-1)^n\binom{2n}{n}}{2^{4n}(2n+1)^2} 
\end{align*}


Click here for the proof.


We used the previous established result


\begin{align*}
\operatorname{Li}_2\left(\phi^{-2})\right)=\frac{\pi^2}{15}-\ln^2(\phi)
\end{align*}

Click here for the proof.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II