SUM INVOLVING THE CENTRAL BINOMIAL COEFFICIENT

Here is another interesting (finite) sum involving the central Binomial Coefficient from this Twitter post:


\sum _{k=0}^n { n \choose k} \frac{(-1)^k}{2k+1} = \frac{(2n)!!}{(2n+1)!!}



Proof:


\begin{aligned}
\sum _{k=0}^n { n \choose k} \frac{(-1)^k}{2k+1} &=\sum _{k=0}^n { n \choose k} (-1)^k \int_0^1x^{2k}\,dx\\
&= \int_0^1 \left(\sum _{k=0}^n { n \choose k} (-x^2)^k \right) \,dx\\
&= \int_0^1 \left(1-x^2 \right)^n \,dx\\
&=\frac12 \int_0^1 \left(1-x \right)^n x^{-1/2} \,dx \qquad \left(x^2 \to x \right)\\
&=\frac12\frac{\Gamma\left(n+1\right)\Gamma\left(\frac12\right)}{\Gamma\left(n+1+\frac12\right)}\\
&=\frac12\frac{n\Gamma\left(n\right)\sqrt{\pi}}{\left(n+\frac12 \right)\Gamma\left(n+\frac12\right)}\\
&=\frac12\frac{\Gamma\left(n+1\right)\sqrt{\pi}}{\left(n+\frac12 \right)\frac{(2n-1)!!\sqrt{\pi}}{2^n}}\\
&=\frac{2^n n!}{\left(2n+1 \right)(2n-1)!!}\\
&=\frac{2 n!!}{(2n+1)!!} \qquad \blacksquare\\
\end{aligned}




\Gamma\left( n+\frac{1}{2}\right)&=\frac{(2n-1)!!}{2^n}\sqrt{\pi}


Proof:

\begin{aligned}
\Gamma\left( n+\frac{1}{2}\right)&=\left( n+\frac{1}{2}-1\right)\Gamma\left( n+\frac{1}{2}-1\right)\\
&=\left( n+\frac{1}{2}-1\right)\left( n+\frac{1}{2}-2\right)\Gamma\left( n+\frac{1}{2}-2\right)\\
&= \cdots\\
&=\left( n+\frac{1}{2}-1\right)\left( n+\frac{1}{2}-2\right)\,\cdots \,\left( n+\frac{1}{2}-n\right)\Gamma\left( n+\frac{1}{2}-n\right)\\
&=\left( n-\frac{1}{2}\right)\left( n-\frac{3}{2}\right)\,\cdots \,\frac{1}{2}\,\Gamma\left( \frac{1}{2}\right)\\
&=\left( \frac{2n-1}{2}\right)\left( \frac{2n-3}{2}\right)\,\cdots \,\frac{1}{2}\,\sqrt{\pi}\\
&=\frac{(2n-1)!!}{2^n}\sqrt{\pi} \qquad \blacksquare\\
\end{aligned}



2n!!=2^n n!


Proof:


\begin{aligned}
2n!!&=(2n)(2n-2)(2n-4)\cdots4 \cdot 2\\
&=2\times(n)\cdot2\times(n-1)\cdot2\times(n-2)\cdots 2\times 2\cdot 2 \times 1\\
&=2^n n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1\\
&=2^n n! \qquad \blacksquare
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II