\int x/(1+x^2)*1/(tanh(\pi*x/2))dx

Today´s post we will prove the challenging result posted by @integralsbot here:


\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} \frac{d x}{\tanh \frac{\pi x}{2}}=\frac{\pi^{2}}{8}-\frac{1}{2}


To this end, we will first establish the following three results:


\int_0^\infty\frac{e^{-st}}{\cos(bx)+\cosh(bt)}\,dt&=\frac{2}{\sin(bx)}\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(bkx  \right)}{s+bk}\\
& \\
& \\
\int_0^\infty\frac{s}{(s^2+x^2)}\frac{\sinh(bx)}{\sinh(cx)}\,dx&=\pi\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(\frac{\pi kb}{c}  \right)}{c s+\pi k}\\
& \\
& \\
\int_0^\infty\frac{x}{(s^2+x^2)}\frac{\cosh(bx)}{\sinh(cx)}\,dx&=\frac{\pi}{2cs}+\pi\sum_{k=1}^\infty \frac{(-1)^{k}\cos\left(\frac{\pi kb}{c}  \right) }{c s+\pi k}



We begin proving two Lemmas:


Lemma 1:

\frac{1}{\cos(bx)+\cosh(bt)}=\frac{2}{\sin(bx)}\sum_{k=1}^\infty (-1)^{k-1} e^{-bkt}\sin\left(bkx  \right)


proof:


\begin{aligned}
\frac{1}{\cos(bx)+\cosh(bt)}&=\frac{2}{e^{ibx}+e^{-ibx}+e^{bt}+e^{-bt}}\\
&=\frac{2}{e^{bt}\left(1+e^{-2bt}+e^{-bt+ibx}+e^{-bt-ibx}\right)}\\
&=\frac{2e^{-bt}}{\left(1+e^{-bt+ibx}\right)\left(1+e^{-bt-ibx}\right)}\\
&=\frac{2e^{-bt}}{2ie^{-bt}\sin(bx)}\left(\frac{1}{1+e^{-bt-ibx}}-\frac{1}{1+e^{-bt+ibx}} \right)\\
&=\frac{2e^{-bt}}{2ie^{-bt}\sin(bx)}\left(\sum_{k=0}^\infty (-1)^k e^{-bkt-ibkx}-\sum_{k=0}^\infty (-1)^k e^{-bkt+ibkx} \right)\\
&=\frac{2}{2i\sin(bx)}\sum_{k=0}^\infty (-1)^{k+1} e^{-bkt}\left(e^{ibkx}-e^{-ibkx}  \right)\\
&=\frac{2}{\sin(bx)}\sum_{k=0}^\infty (-1)^{k+1} e^{-bkt}\sin\left(bkx  \right) \\
&=\frac{2}{\sin(bx)}\sum_{k=1}^\infty (-1)^{k-1} e^{-bkt}\sin\left(bkx  \right) \qquad \blacksquare\\
\end{aligned}


Lemma 2:

\sum_{k=1}^\infty (-1)^{k-1} \cos\left(xk \right)=\frac12

Proof:


\begin{aligned}
\sum_{k=1}^\infty (-1)^{k-1} \cos\left(xk \right)&=\frac12\sum_{k=1}^\infty (-1)^{k-1} \left(e^{xk}+e^{-xk} \right)\\
&=\frac12\left(\sum_{k=1}^\infty (-1)^{k-1} e^{xk}+\sum_{k=1}^\infty (-1)^{k-1}e^{-xk} \right)\\
&=\frac12\left(\frac{1}{1+e^{xk}}+\frac{1}{1+e^{-xk}}\right)\\
&=\frac12\left(\frac{2+e^{xk}+e^{-xk}}{\left(1+e^{xk}\right)\left(1+e^{-xk}\right)}\right)\\
&=\frac12\left(\frac{2+e^{xk}+e^{-xk}}{2+e^{xk}+e^{-xk}}\right)\\
&=\frac12 \qquad \blacksquare\\
\end{aligned}


Now, let´s evaluate the first integral


\begin{aligned}
I&=\int_0^\infty\frac{e^{-st}}{\cos(bx)+\cosh(bt)}\,dt\\
&=\frac{2}{\sin(bx)}\sum_{k=1}^\infty (-1)^{k-1} \sin\left(bkx  \right)\int_0^\infty e^{-(s+bk)t}\,dt \qquad (*)\\
&=\frac{2}{\sin(bx)}\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(bkx  \right)}{s+bk} \qquad \blacksquare
\end{aligned}


where in (*) we applied Lemma 1


Now recall the Laplace transform of the cosine function, a proof can be found in this post:


\int_0^\infty e^{-st}\cos(xt)\,dt=\frac{s}{(s^2+x^2)}

Then


\begin{aligned}
I(s)&=\int_0^\infty\frac{s}{(s^2+x^2)}\frac{\sinh(bx)}{\sinh(cx)}\,dx\\
&=\int_0^\infty\left(\int_0^\infty e^{-st}\cos(xt)\,dt \right)\frac{\sinh(bx)}{\sinh(cx)}\,dx\\
&=\int_0^\infty  e^{-st} \int_0^\infty  \frac{\cos(xt)\sinh(bx)}{\sinh(cx)}\,dx\,dt\\
&=\int_0^\infty  e^{-st} \left(\frac{\pi}{2 c} \cdot \frac{\sin\left(\frac{b \pi}{c}\right)}{\cosh\left(\frac{t \pi}{c}\right)+\cos\left(\frac{b \pi}{c}\right)} \right)\,dt \qquad (**)\\
&=\frac{\pi}{2 c} \sin\left(\frac{b \pi}{c}\right)\int_0^\infty \frac{e^{-st}}{\cosh\left(\frac{t \pi}{c}\right)+\cos\left(\frac{b \pi}{c}\right)} \\
&=\frac{\pi \sin\left(\frac{b \pi}{c}\right)}{c\sin\left(\frac{b \pi}{c}\right)}\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(\frac{\pi kb}{c}  \right)}{s+\frac{\pi k}{c}}\\
&=\pi\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(\frac{\pi kb}{c}  \right)}{c s+\pi k}   \qquad \blacksquare
\end{aligned}


In (**) we used the following result proved in this post


\int_0^\infty  \frac{\cos(xt)\sinh(bx)}{\sinh(cx)}\,dx =\frac{\pi}{2 c} \cdot \frac{\sin\left(\frac{b \pi}{c}\right)}{\cosh\left(\frac{t \pi}{c}\right)+\cos\left(\frac{b \pi}{c}\right)}


Therefore, we have that


\int_0^\infty\frac{s}{(s^2+x^2)}\frac{\sinh(bx)}{\sinh(cx)}\,dx=\pi\sum_{k=1}^\infty \frac{(-1)^{k-1} \sin\left(\frac{\pi kb}{c}  \right)}{c s+\pi k}(1)


Differentiating (1) w.r. to b gives us


\begin{aligned}
\int_0^\infty\frac{x}{(s^2+x^2)}\frac{\cosh(bx)}{\sinh(cx)}\,dx&=\frac{\pi}{c s }\sum_{k=1}^\infty \frac{(-1)^{k-1} \pi k }{c s+\pi k}\cos\left(\frac{\pi kb}{c}  \right)\\
&=\frac{\pi}{cs}\sum_{k=1}^\infty \frac{(-1)^{k-1} \left(cs+\pi k-cs\right) }{c s+\pi k}\cos\left(\frac{\pi kb}{c}  \right)\\
&=\frac{\pi}{cs}\sum_{k=1}^\infty (-1)^{k-1} \cos\left(\frac{\pi kb}{c}  \right)-\pi\sum_{k=1}^\infty \frac{(-1)^{k-1}\cos\left(\frac{\pi kb}{c}  \right) }{c s+\pi k}\\
&=\frac{\pi}{2cs}+\pi\sum_{k=1}^\infty \frac{(-1)^{k}\cos\left(\frac{\pi kb}{c}  \right) }{c s+\pi k}  \qquad \blacksquare\\
\end{aligned}


Where in the last line we used Lemma 2, then


\int_0^\infty\frac{x}{(s^2+x^2)}\frac{\cosh(bx)}{\sinh(cx)}\,dx=\frac{\pi}{2cs}+\pi\sum_{k=1}^\infty \frac{(-1)^{k}\cos\left(\frac{\pi kb}{c}  \right) }{c s+\pi k}(2)


If we let b=c in (2) we obtain


\int_0^\infty\frac{x}{(s^2+x^2)}\frac{1}{\tanh(cx)}\,dx=\frac{\pi}{2cs}+\pi\sum_{k=1}^\infty \frac{1 }{c s+\pi k}(3)


Letting c=\frac{\pi}{2} in (3)


\begin{aligned}
\int_0^\infty\frac{x}{(s^2+x^2)}\frac{1}{\tanh\left(\frac{\pi x }{2}\right)}\,dx&=\frac{1}{s}+\sum_{k=1}^\infty \frac{1  }{ \frac{s}{2}+ k}\\
&=\frac{1}{s}+2\sum_{k=1}^\infty \frac{1  }{ s+ 2k}\\
\end{aligned}(4)

Now, if we differentiate (4) w.r. to s we obtain


\int_0^\infty\frac{x}{(s^2+x^2)^2}\frac{1}{\tanh\left(\frac{\pi x }{2}\right)}\,dx
&=\frac{1}{2s^3}+\frac{1}{s}\sum_{k=1}^\infty \frac{1  }{ (s+ 2k)^2}\\(5)


And now setting s=1 in (5)


\begin{aligned}
\int_0^\infty\frac{x}{(1+x^2)^2}\frac{1}{\tanh\left(\frac{\pi x }{2}\right)}\,dx
&=\frac{1}{2}+\sum_{k=1}^\infty \frac{1  }{ ( 2k+1)^2}\\
&=\frac{1}{2}+1-1+\sum_{k=1}^\infty \frac{1  }{ ( 2k+1)^2}\\
&=-\frac{1}{2}+\sum_{k=0}^\infty \frac{1  }{ ( 2k+1)^2}\\
&=\frac{\pi^2}{8}-\frac{1}{2}  \qquad \blacksquare
\end{aligned}


Proof of    \sum_{k=0}^\infty \frac{1  }{ ( 2k+1)^2}=\frac{\pi^2}{8}

First note that

\sum_{k=0}^\infty \frac{1  }{ ( 2k+1)^2}=\sum_{k=1}^\infty \frac{1  }{ ( 2k-1)^2}(A.1)


Than recall the well known result (a simple proof can be found in this post)


\sum_{k=1}^\infty \frac{1  }{ k^2}=\frac{\pi^2}{6}(A.2)


We can split the L.H.S. of (A.2) in it´s even and odd terms, namely

\begin{aligned}
\sum_{k=1}^\infty \frac{1  }{ k^2}&=\sum_{k=1}^\infty \frac{1  }{ (2k)^2}+\sum_{k=1}^\infty \frac{1  }{ ( 2k-1)^2}\\
&=\frac14\sum_{k=1}^\infty \frac{1  }{ k^2}+\sum_{k=1}^\infty \frac{1  }{ ( 2k-1)^2}\\
\end{aligned}

or

\begin{aligned}
\sum_{k=1}^\infty \frac{1  }{ ( 2k-1)^2}&=\zeta(2)-\frac14\zeta(2)\\
&=\frac34\zeta(2)\\
&=\frac34 \frac{\pi^2}{6}\\
&=\frac{\pi^2}{8}  \qquad \blacksquare
\end{aligned}

Comments

Popular posts from this blog