INFINITE SUM 1/(n^4+4x^4)

Today, we will proof the result that appears here, namely:


\sum_{n=-\infty}^{\infty}\frac{1}{n^4+4x^4}=\frac{\pi }{4x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)}



Lets start by evaluating an easier infinte sum that is related to our goal Sum.


\begin{aligned}
\sum_{n=1}^{\infty}\frac{1}{n^4-x^4}&=\sum_{n=1}^{\infty}\frac{1}{(n^2-x^2)(n^2+x^2)}\\
&=\frac{1}{2x^2}\sum_{n=1}^{\infty}\left(\frac{1}{n^2-x^2}-\frac{1}{n^2+x^2}\right)\\
&=\frac{1}{2x^2}\left( \frac{1}{2x^2}-\frac{\pi \cot(\pi x)}{2x}+\frac{1}{2x^2}-\frac{\pi \coth(\pi x)}{2x}\right)\\
&=\frac{1}{2x^4}-\frac{\pi \coth(\pi x)}{4x^3}-\frac{\pi \cot(\pi x)}{4x^3}\\
&=\frac{2-\pi x(\cot(\pi x)+\coth(\pi x))}{4x^4} 
\end{aligned}


\boxed{\sum_{n=1}^{\infty}\frac{1}{n^4-x^4}=\frac{2-\pi x(\cot(\pi x)+\coth(\pi x))}{4x^4}}(1)


If we let x \mapsto \sqrt{2}xe^{\frac{i \pi}{4}} in (1) we get


\begin{aligned}
\sum_{n=1}^{\infty}\frac{1}{n^4-\left(\sqrt{2}xe^{\frac{i \pi}{4}}\right)^4}&=\frac{2-\pi \sqrt{2}xe^{\frac{i \pi}{4}}\left(\cot\left(\pi \sqrt{2}xe^{\frac{i \pi}{4}}\right)+\coth\left(\pi\sqrt{2}xe^{\frac{i \pi}{4}}\right)\right)}{4\left(\sqrt{2}xe^{\frac{i \pi}{4}}\right)^4}\\
\sum_{n=1}^{\infty}\frac{1}{n^4+4x^4}&=\frac{2-\pi \sqrt{2}xe^{\frac{i \pi}{4}}\left(\cot\left(\pi \sqrt{2}xe^{\frac{i \pi}{4}}\right)+\coth\left(\pi\sqrt{2}xe^{\frac{i \pi}{4}}\right)\right)}{-16x^4}\\
&=-\frac{1}{8x^4}+\frac{\pi (1+i)}{16x^3}\left(\cot\left(\pi x(1+i)}\right)+\coth\left(\pi x(1+i)\right)\right)
\end{aligned}


Applying (A.7) and (A.8) we obtain


\begin{aligned}
&=-\frac{1}{8x^4}+\frac{\pi (1+i)(1-i)}{16x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)\\
&=-\frac{1}{8x^4}+\frac{\pi }{8x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)\\
\end{aligned}


\boxed{\sum_{n=1}^{\infty}\frac{1}{n^4+4x^4}=-\frac{1}{8x^4}+\frac{\pi }{8x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)}(2)


Now, observe the following


\begin{aligned}
\sum_{n=-\infty}^{\infty}\frac{1}{n^4+4x^4}&=\sum_{n=-\infty}^{-1}\frac{1}{n^4+4x^4}+\frac{1}{4x^4}+\sum_{n=1}^{\infty}\frac{1}{n^4+4x^4} \qquad (n \mapsto -n \, \text{in the first sum})\\
&=\sum_{n=\infty}^{1}\frac{1}{n^4+4x^4}+\frac{1}{4x^4}+\sum_{n=1}^{\infty}\frac{1}{n^4+4x^4} \\
&=\frac{1}{4x^4}+2\sum_{n=1}^{\infty}\frac{1}{n^4+4x^4} \\
\end{aligned}

Using result (2)

\begin{aligned}
&=\frac{1}{4x^4}-\frac{1}{4x^4}+\frac{\pi }{4x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)}\\
\end{aligned}

\boxed{\sum_{n=-\infty}^{\infty}\frac{1}{n^4+4x^4}=\frac{\pi }{4x^3}\left(\frac{\sinh\left(2 \pi x\right)+\sin\left(2 \pi x\right)}{\cosh\left(2 \pi x\right)-\cos\left(2 \pi x\right)}\right)}}(3)


Appendix

\boxed{\cos(x-y)-\cos(x+y)=2\cos x \, \cos y }(A.1)

Proof:

Recall

\cos(x-y)=\cos x \, \cos y+\sin x \, \sin y(A.2)

\cos(x+y)=\cos x \, \cos y-\sin x \, \sin y(A.3)

(A.2) - (A.3)

\begin{aligned}
\cos(x-y)-\cos(x+y)&=\cos x \, \cos y+\sin x \, \sin y-\cos x \, \cos y+\sin x \, \sin y\\
&=2\cos x \, \cos y \qquad \blacksquare
\end{aligned}


\boxed{\sin (x+y)-\sin (x-y)&=2\sin x \, \cos y}(A.4)

Proof:

Recall

\sin (x+y)=\cos x \sin y+ \sin x \cos y(A.5)

\sin (x-y)=\sin x \cos y -\cos x \sin y(A.6)

Then, (A.5) - (A.6)

\begin{aligned}
\sin (x+y)-\sin (x-y)&=\cos x \sin y+ \sin x \cos y-\sin x \cos y +\cos x \sin y\\
&=2\sin x \, \cos y \qquad \blacksquare
\end{aligned}


\boxed{\cot(x+iy)=\frac{\sin (2x)-i\sinh (2y)}{\cosh(2y)-\cos(2x)}}(A.7)

                         \begin{aligned}
\cot(x+iy)&=\frac{\cos (x+iy)}{\sin (x+iy)}\\
&=\frac{2\cos (x+iy)\sin (x-iy)}{2\sin (x+iy)\sin (x-iy)}\\
&=\frac{\sin (x+iy+x-iy)-\sin (x+iy-x+iy)}{\cos(x+iy-x+iy)-\cos(x+iy+x-iy)}\\
&=\frac{\sin (2x)-\sin (2iy)}{\cos(2iy)-\cos(2x)}\\
&=\frac{\sin (2x)-i\sinh (2y)}{\cosh(2y)-\cos(2x)}\qquad \blacksquare
\end{aligned}


\boxed{\coth(x+iy)=\,\frac{\sinh\left(2x\right)-i\sin\left(2y\right)}{\cosh\left(2x\right)-\cos\left(2y\right)}}(A.8)

Proof:

\begin{aligned}
\coth(x+iy)&=\frac{\cosh(x+iy)}{\sinh(x+iy)}\\
&=\frac{\cos\left(i(x+iy)\right)}{-i\sin\left(i(x+iy)\right)}\\
&=i\,\frac{\cos\left(ix-y\right)}{\sin\left(ix-y)\right)} \\
&=i\,\frac{\cos\left(-(y-ix)\right)}{\sin\left(-(y-ix)\right)} \\
&=i\,\frac{2\cos\left(y-ix\right)}{-2\sin\left(y-ix\right)} \cdot \frac{\sin\left(y+ix)\right)}{\sin\left(y+ix)\right)}\\
&=-i\,\frac{\sin\left(y+ix+y-ix\right)-\sin\left(y+ix-y+ix\right)}{\cos\left(y-ix-y-ix\right)-\cos\left(y-ix+y+ix\right)}\\
&=-i\,\frac{\sin\left(2y\right)-\sin\left(2ix\right)}{\cos\left(-2ix\right)-\cos\left(2y\right)}\\
&=-i\,\frac{\sin\left(2y\right)+i\sinh\left(2x\right)}{\cosh\left(2x\right)-\cos\left(2y\right)}\\
&=\,\frac{\sinh\left(2x\right)-i\sin\left(2y\right)}{\cosh\left(2x\right)-\cos\left(2y\right)}\qquad \blacksquare
\end{aligned}


Comments

Popular posts from this blog

HARD INTEGRAL - PART II