A log trig integral \int_0^{\pi/2}\ln\left(1+a\sin^2 x \right) \,dx

In this post we will prove the following result


\begin{align*}
\int_0^{\pi/2}\ln\left(1+a\sin^2 x \right) \,dx&=\pi \ln \frac{1+\sqrt{1+a}}{2}
\end{align*}


Click here for the proof


We have relied on the previous established result


\begin{align*}
\sum_{n=1}^\infty \binom{2n}{n}\frac{x^n}{ 2^{2n} n}&=2\ln\left(\frac{2}{1+\sqrt{1-x}} \right) 
\end{align*}


Proof  here.

Comments

Popular posts from this blog