Infinite sum reciprocal of cosh(n \pi)

In today´s blog entry we will prove the following infinte sum


\begin{align*}
    \sum_{n=-\infty}^\infty \frac{1}{\cosh(n \pi )}
     &=\frac{\sqrt{\pi}}{\Gamma^2\left(\frac{3}{4}\right)}
    \end{align*}



Click here to see the proof.

Comments

Popular posts from this blog

HARD INTEGRAL - PART II