MOMENTS OF THE LOGGAMMA FUNCTION BETWEEN 0 AND 1/2

In this post we will prove the beautiful results below related to the moments of the Loggamma function in the interval between zero and  1/2.



\int_0^{1/2} x \ln\left(\Gamma(x)\right)\,dx=\frac{\ln \left(4 \pi^3 A^{12}\right)}{48} -\frac{7\,\zeta(3)}{32 \pi^2}


\int_0^{1/2} x^2 \ln\left(\Gamma(x)\right)\,dx=\frac{\ln \left(\pi^{60} 2^{31}A^{360} \right)}{2880} -\frac{3\zeta(3)}{32\pi^ 2}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}



First recall Kummer´s fourier series for the Loggamma function


\log(\Gamma(x))=\frac{\log(2 \pi)}{2}+ \sum_{k=1}^{\infty}\frac{1}{2k}\cos(2 \pi k x) + \sum_{k=1}^{\infty}\frac{\gamma+\log(2 \pi )+\ln(k)}{ \pi k}\sin(2 \pi k x)(1)


Then multiply both sides of (1) by x and integrate from zero and 1/2:


\begin{aligned}
\int_0^{1/2} x \ln\left(\Gamma(x)\right)\,dx&=\frac{\ln 2 \pi}{2}\int_0^{1/2}x\,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_0^{1/2} x \cos\left(2 \pi k x\right)\,dx + \sum_{k=1}^{\infty}\frac{\gamma+\ln\left(2 \pi k\right)}{ \pi k}\int_0^{1/2} x \sin\left(2 \pi k x \right)\,dx\\
&=\frac{\ln 2 \pi}{16}-\sum_{k=1}^{\infty}\frac{1}{2k}\left( \frac{1}{4 \pi^2 k^2}+\frac{(-1)^{k-1}}{4 \pi^2 k^2}\right)+ \sum_{k=1}^{\infty}\frac{\gamma+\ln 2 \pi +\ln k}{ \pi k}\left(\frac{(-1)^{k-1}}{4 \pi k}\right)\\
&=\frac{\ln 2 \pi}{16}-\frac{1}{8 \pi^2}\sum_{k=1}^{\infty}\frac{1}{k^3}-\frac{1}{8 \pi^2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^3}+\frac{\gamma}{4 \pi^2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2}+\frac{\ln 2 \pi}{4 \pi^2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2}+\frac{1}{4 \pi^2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}\ln k}{k^2}\\
&=\frac{\ln 2 \pi}{16}-\frac{1}{8 \pi^2}\zeta(3)-\frac{1}{8 \pi^2}\eta(3)+\frac{\gamma}{4 \pi^2}\eta(2)+\frac{\ln 2 \pi}{4 \pi^2}\eta(2)-\frac{1}{4 \pi^2}\eta^\prime(2)\\
&=\frac{\ln 2 \pi}{16}-\frac{1}{8 \pi^2}\zeta(3)-\frac{1}{8 \pi^2}\left(1-\frac14\right)\zeta(3)+\frac{\gamma+\ln 2 \pi}{4 \pi^2} \cdot\frac{\pi^2}{12}-\frac{\eta^\prime(2)}{4 \pi^2}\\
&=\frac{\ln 2 \pi}{16}-\frac{7 \zeta(3)}{32 \pi^2}+\frac{\gamma+\ln 2 \pi}{48} -\frac{1}{4 \pi^2}\left(\frac{\ln 2}{2}\zeta(2)+ \left(1-\frac12 \right)\zeta^\prime(2)\right)\\
&=\frac{ \ln 2 \pi}{16}-\frac{7 \zeta(3)}{32 \pi^2}+\frac{\gamma}{48} +\frac{\ln 2 \pi}{48}-\frac{\ln 2}{48}- \frac{1}{8 \pi^2}\zeta(2)\left(-12 \ln A + \gamma + \ln2 \pi \right)\\
&=\frac{ \ln 2 \pi}{16}-\frac{7 \zeta(3)}{32 \pi^2}+\frac{\gamma}{48} +\frac{\ln 2 \pi}{48}-\frac{\ln 2}{48}- \frac{1}{48 }\left(-12 \ln A + \gamma + \ln2 \pi \right)\\
&=\frac{ \ln 2 \pi}{16}-\frac{7 \zeta(3)}{32 \pi^2}-\frac{\ln 2}{48} +\frac{12 \ln A}{48 } \\
&=\frac{ \ln \left( 4 \pi^3 A^{12}\right)}{48 }-\frac{7 \zeta(3)}{32 \pi^2} \qquad \blacksquare \\
\end{aligned}


Where We used that \zeta^\prime(2) =\zeta(2)\left(-12 \ln A + \gamma + \ln2 \pi \right)


And    \eta^{\prime}(s)=\sum_{k=1}^{\infty} \frac{(-1)^{k} \ln k}{k^{s}}=2^{1-s} \ln (2) \zeta(s)+\left(1-2^{1-s}\right) \zeta^{\prime}(s)


For the second integral, multiply both sides of (1) by x^2 and integrate from 0 to 1/2


\begin{aligned}
\int_0^{1/2} x^2 \ln\left(\Gamma(x)\right)\,dx&=\underbrace{\frac{\ln 2 \pi}{2}\int_0^{1/2} x^2\,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_0^{1/2} x^2 \cos\left(2 \pi k x\right)\,dx}_{(1)} + \underbrace{\frac{\left(\gamma+\ln(2 \pi) \right)}{ \pi }\sum_{k=1}^{\infty}\frac{1}{  k}\int_0^{1/2} x^2 \sin\left(2 \pi k x \right)\,dx}_{(2)} + \underbrace{\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\ln\left(k \right)}{  k}\int_0^{1/2} x^2 \sin\left(2 \pi k x \right)\,dx}_{(3)}\\
\end{aligned}


\begin{aligned}
(1)&=\frac{\ln 2 \pi}{2}\int_0^{1/2} x^2\,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_0^{1/2} x^2 \cos\left(2 \pi k x\right)\,dx\\
&=\frac{\ln 2 \pi}{48}-\frac{1}{8\pi^ 2}\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k^3}\\
&=\frac{\ln 2 \pi}{48}-\frac{\eta(3)}{8\pi^ 2}\\
&=\frac{\ln 2 \pi}{48}-\frac{3\zeta(3)}{32\pi^ 2}\\
&=\frac{\ln 2 }{48}+\frac{\ln \pi }{48}-\frac{3\zeta(3)}{32\pi^ 2}\\
&=\frac{60\ln 2 }{2880}+\frac{60\ln \pi }{2880}-\frac{3\zeta(3)}{32\pi^ 2}\\
\end{aligned}


\begin{aligned}
(2)&=\frac{\left(\gamma+\ln(2 \pi) \right)}{ \pi }\sum_{k=1}^{\infty}\frac{1}{  k}\int_0^{1/2} x^2 \sin\left(2 \pi k x \right)\,dx\\
&=\frac{\left(\gamma+\ln(2 \pi) \right)}{ \pi }\sum_{k=1}^{\infty}\frac{1}{  k}\left(-\frac{(-1)^{k}}{8 \pi k}-\frac{1}{4 \pi^3 k^3}+\frac{(-1)^{k}}{4 \pi^3 k^3}\right)\\
&=\left(\gamma+\ln(2 \pi) \right)\left(\frac{1}{8\pi^2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{  k^2}-\frac{1}{4 \pi^4}\sum_{k=1}^{\infty}\frac{1}{  k^4}-\frac{1}{4 \pi^4}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{  k^4}
\right)\\
&=\left(\gamma+\ln(2 \pi) \right)\left(\frac{1}{8\pi^2} \eta(2)-\frac{1}{4 \pi^4}\zeta(4)-\frac{1}{4 \pi^4} \eta(4)
\right)\\
&=\left(\gamma+\ln(2 \pi) \right)\left(\frac{1}{8\pi^2} \frac{\pi^2}{12}-\frac{1}{4 \pi^4}\frac{\pi^4}{90}-\frac{1}{4 \pi^4} \frac{7 \pi^4}{720}
\right)\\
&=\left(\gamma+\ln(2 \pi) \right)\left(\frac{1}{96} -\frac{1}{360}- \frac{7 }{2880}
\right)\\
&= \frac{15\left(\gamma+\ln(2 \pi) \right) }{2880}\\
&= \frac{15\gamma }{2880}+\frac{15\ln(2) }{2880}+\frac{15\ln(\pi) }{2880}\\
\end{aligned}


\begin{aligned}
(3)&=\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\ln\left(k \right)}{  k}\int_0^{1/2} x^2 \sin\left(2 \pi k x \right)\,dx\\
&=\frac{1}{\pi}\sum_{k=1}^\infty \frac{\ln(k)}{k}\left(-\frac{(-1)^{k}}{8 \pi k}-\frac{1}{4 \pi^3 k^3}+\frac{(-1)^{k}}{4 \pi^3 k^3}\right)\\
&=-\frac{1}{8\pi^2}\sum_{k=1}^\infty \frac{(-1)^k\ln(k)}{k^2}-\frac{1}{4 \pi^4}\sum_{k=1}^\infty \frac{\ln(k)}{k^4}+\frac{1}{4 \pi^4}\sum_{k=1}^\infty \frac{(-1)^k\ln(k)}{k^4}\\
&=-\frac{1}{8\pi^2}\eta^\prime(2)+\frac{1}{4 \pi^4}\zeta^\prime(4)+\frac{1}{4 \pi^4}\eta^\prime(4)\\
&=-\frac{1}{8\pi^2}\eta^\prime(2)+\frac{1}{4 \pi^4}\zeta^\prime(4)+\frac{1}{4 \pi^4}\left(\frac{\pi^4}{720}\ln(2)+\frac78\zeta^\prime(4) \right)\\
&=-\frac{1}{8\pi^2}\eta^\prime(2)+\frac{\ln(2)}{2880}+\frac{15}{8}\frac{\zeta^\prime(4)}{4 \pi^4} \\
&=-\frac{1}{8\pi^2}\frac{\pi^2}{12}\left(2\ln(2)-12\ln A+\gamma+\ln(\pi) \right)+\frac{\ln(2)}{2880}+\frac{15}{8}\frac{1}{4 \pi^4}\left(\frac{\pi^4}{90}\left(\ln(2 \pi)+\gamma \right)-\frac{11 \pi^4}{540}-\frac{4 \pi^4}{3}\zeta^{\prime}(-3) \right) \\
&=-\frac{\left(2\ln(2)-12\ln A+\gamma+\ln(\pi) \right)}{96}+\frac{\ln(2)}{2880}+\frac{15\left(\ln(2 \pi)+\gamma \right)}{2880}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}  \\
&=-\frac{60\ln(2) }{2880}+\frac{360\ln A }{2880}-\frac{30 \gamma }{2880}-\frac{30 \ln(\pi) }{2880}+\frac{\ln(2)}{2880}+\frac{15\left(\ln(2 \pi)+\gamma \right)}{2880}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}  \\
&=-\frac{60\ln(2) }{2880}+\frac{360\ln A }{2880}-\frac{30 \gamma }{2880}-\frac{30 \ln(\pi) }{2880}+\frac{\ln(2)}{2880}+\frac{15\ln(2) }{2880}+\frac{15\ln(\pi) }{2880}+\frac{15\gamma }{2880}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}  \\
\end{aligned}


Collecting all the results and putting together we obtain

\begin{aligned}
\int_0^{1/2} x^2 \ln\left(\Gamma(x)\right)\,dx&=\frac{60\ln 2 }{2880}+\frac{60\ln \pi }{2880}-\frac{3\zeta(3)}{32\pi^ 2}\\
&+\frac{15\gamma }{2880}+\frac{15\ln(2) }{2880}+\frac{15\ln(\pi) }{2880}\\
&-\frac{60\ln(2) }{2880}+\frac{360\ln A }{2880}-\frac{30 \gamma }{2880}-\frac{30 \ln(\pi) }{2880}+\frac{\ln(2)}{2880}+\frac{15\ln(2) }{2880}+\frac{15\ln(\pi) }{2880}+\frac{15\gamma }{2880}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}\\
&=\frac{60 \ln(\pi)}{2880}+\frac{31 \ln(2)}{2880}+\frac{360\ln A }{2880}-\frac{3\zeta(3)}{32\pi^ 2}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}\\
&=\frac{\ln \left(\pi^{60} 2^{31}A^{360} \right)}{2880} -\frac{3\zeta(3)}{32\pi^ 2}-\frac{11 }{1152}-\frac{5\zeta^{\prime}(-3)}{8}\qquad \blacksquare
\end{aligned}


Appendix

\begin{aligned}
\int_0^{1/2} x \cos(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^2}\int_0^{\pi k} x \cos(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^2}\left(x\sin(x)\Big|_0^{ \pi k} -\int_0^{ \pi k}\sin(x)\,dx\right)\\
&=\frac{1}{(2 \pi k)^2}\left(\cos(x)\Big|_0^{ \pi k}\right)\\
&=\frac{1}{(2 \pi k)^2}\left((-1)^k-1\right)\\
&=-\left(\frac{1}{4 \pi^2 k^2}+\frac{(-1)^{k-1}}{4 \pi^2 k^2} \right) \qquad \blacksquare
\end{aligned}


\begin{aligned}
\int_0^1 x \sin(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^2}\int_0^{\pi k} x \sin(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^2}\left(-x\cos(x)\Big|_0^{ \pi k} +\int_0^{ \pi k}\cos(x)\,dx\right)\\
&=\frac{1}{(2 \pi k)^2}\left(- \pi k(-1)^k\right)\\
&=\frac{(-1)^{k-1}}{4 \pi k}\qquad \blacksquare
\end{aligned}


\begin{aligned}
\int_0^{1/2} x^2 \cos(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^3}\int_0^{\pi k} x^2 \cos(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^3}\left(x^2\sin(x)\Big|_0^{ \pi k} -2\int_0^{ \pi k}x\sin(x)\,dx\right)\\
&=\frac{-2}{(2 \pi k)^3}\left(\int_0^{ \pi k}x \sin x \,dx\right)\\
&=\frac{-2}{(2 \pi k)^3}\left(-x\cos x\Big|_0^{ \pi k}+\int_0^{ \pi k}\cos x \,dx\right)\\
&=\frac{2}{(2 \pi k)^3}\left(\pi k (-1)^k \right)\\
&= \frac{ (-1)^k}{4 \pi^2 k^2}\qquad \blacksquare
\end{aligned}


\begin{aligned}
\int_0^{1/2} x^2 \sin(2 \pi kx)\,dx&=\frac{1}{(2 \pi k)^3}\int_0^{ \pi k} x^2 \sin(x)\,dx \qquad (2 \pi kx \to x)\\
&=\frac{1}{(2 \pi k)^3}\left(-x^2\cos(x)\Big|_0^{ \pi k} +2\int_0^{ \pi k}x\cos(x)\,dx\right)\\
&=\frac{1}{(2 \pi k)^3}\left(- \pi^2 k^2(-1)^k+2\left((-1)^{k}-1 \right)\right)\\
&=\frac{(-1)^{k-1}}{8 \pi k}-\frac{1}{4 \pi^3 k^3}+\frac{(-1)^{k}}{4 \pi^3 k^3}\qquad \blacksquare
\end{aligned}


Derivative of the Dirichlet Eta function

\eta^{\prime}(s)=\sum_{k=1}^{\infty} \frac{(-1)^{k} \ln k}{k^{s}}=2^{1-s} \ln (2) \zeta(s)+\left(1-2^{1-s}\right) \zeta^{\prime}(s)


Then :

\begin{aligned}
\eta^{\prime}(2)&=\frac12\left(\ln(2)\zeta(2) \right)+\frac12 \zeta^\prime(2)\\
&=\frac12\left(\ln(2)\zeta(2) \right)+\frac12\zeta(2)\left(-12 \ln A + \gamma + \ln2 \pi \right) \\
&=\frac{\pi^2}{12}\left(2\ln(2)-12\ln A+\gamma+\ln(\pi) \right) \qquad \blacksquare
\end{aligned}

We used that:

\zeta^{\prime}(2)=\zeta(2)\left(-12 \ln A + \gamma + \ln2 \pi \right)


And

\begin{aligned}
\eta^{\prime}(4)&=\frac18\left(\ln(2)\zeta(4) \right)+\left(1-\frac18 \right)\zeta^\prime(4)\\
&=\frac{\pi^4}{720}\ln(2)+\frac78\zeta^\prime(4)\qquad \blacksquare
\end{aligned}


\zeta^{\prime}(-3) in terms of \zeta^{\prime}(4)

Now, recall the functional equation of the Riemann Zeta function

\zeta(s) = \frac{1}{\pi}(2 \pi)^{s} \sin \left( \frac{\pi s}{s} \right) \Gamma(1-s) \zeta(1-s)

Differentiating w.r. to s we obtain:

\zeta'(s) = \frac{1}{\pi} \log(2 \pi)(2 \pi)^{s} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) + \frac{\pi}{2} (2 \pi)^{s} \cos \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)- \frac{1}{\pi}(2 \pi)^{s} \sin \left(\frac{\pi s}{2} \right)\Gamma^{'}(1-s) \zeta(1-s) - \frac{1}{\pi}(2 \pi)^{s} \sin \left(\frac{\pi s}{2} \right)\Gamma(1-s) \zeta^{\prime}(1-s)

Let s \to -3

\begin{aligned}
\zeta^{\prime}(-3) &= \frac{\ln(2 \pi)}{8\pi^4}  \sin \left( \frac{-3\pi }{2} \right) \Gamma(4) \zeta(4) + \frac{1}{16 \pi^3}  \cos \left(\frac{-3\pi }{2} \right) \Gamma(4) \zeta(4)- \frac{1}{8\pi^4} \sin \left(\frac{-3\pi }{2} \right)\Gamma^{\prime}(4) \zeta(4) - \frac{1}{8\pi^4} \sin \left(\frac{-3\pi }{2} \right)\Gamma(4) \zeta^{\prime}(4)\\
&= \frac{\ln(2 \pi)}{8\pi^4}  \frac{6\pi^4}{90} - \frac{1}{8\pi^4} \Gamma(4)\psi(4) \zeta(4) - \frac{6}{8\pi^4}  \zeta^{\prime}(4)\\
&= \frac{\ln(2 \pi)}{120}   - \frac{1}{8\pi^4} \frac{6\pi^4}{90}\left(-\gamma+\frac{11}{6} \right) - \frac{3}{4\pi^4}  \zeta^{\prime}(4)\\
&= \frac{\ln(2 \pi)}{120}   - \frac{1}{120}\left(-\gamma+\frac{11}{6} \right) - \frac{3}{4\pi^4}  \zeta^{\prime}(4)\\
&= \frac{\ln(2 \pi)+\gamma}{120}   - \frac{11}{720} - \frac{3}{4\pi^4}  \zeta^{\prime}(4)\\
\end{aligned}

Solving for \zeta^{\prime}(4) we obtain

\zeta^{\prime}(4)=\frac{\pi^4}{90}\left(\ln(2 \pi)+\gamma \right)-\frac{11 \pi^4}{540}-\frac{4 \pi^4}{3}\zeta^{\prime}(-3)


Special Values of the Digamma Function

Recall the functional equation of the Digamma function

\psi(x+1)=\psi(x)+\frac 1x

for x=1 we have

\begin{aligned}
\psi(2)&=\psi(1)+1\\
&=1-\gamma
\end{aligned}

for x=2

\begin{aligned}
\psi(3)&=\psi(2)+\frac12\\
&=1-\gamma+\frac12\\
&=\frac32 -\gamma
\end{aligned}

for x=3

\begin{aligned}
\psi(4)&=\psi(3)+\frac13\\
&=\frac32-\gamma+\frac13\\
&=\frac{11}{6} -\gamma
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II