INTEGRAL \int_0^\infty ln(1+e^{-x})/1+e^{-2x}dx

I came across this beautiful integral today in this twitter. Lets evaluate it


\int_0^\infty \frac{\ln(1+e^{-x})}{1+e^{-2x}}dx=\,\frac{7 \pi^2}{96}-\frac{\ln^2(2)}{8}



\begin{aligned}
I&=\int_0^\infty \frac{\ln(1+e^{-x})}{1+e^{-2x}}dx\\
&=\int_0^1\frac{\ln(1+x)}{x(1+x^2)}dx \qquad (e^{-x} \mapsto x)\\
&=\underbrace{\int_0^1\frac{\ln(1+x)}{x}dx}_{J}-\underbrace{\int_0^1\frac{x\ln(1+x)}{(1+x^2)}dx}_{K}
\end{aligned}


\begin{aligned}
J&=\int_0^1\frac{\ln(1+x)}{x}dx\\
&=\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}\int_0^1x^{k-1}dx\\
&=\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^2}\\
&=\frac{\pi^2}{12}
\end{aligned}


\begin{aligned}
K&=\int_0^1\frac{x\ln(1+x)}{(1+x^2)}dx\\
&=\int_0^1 \left(\int_0^1 \,\frac{x^2}{(1+x^2)(1+xy)}\,dy\right)dx\\
&=\int_0^1 \left(\int_0^1 \,\frac{x^2}{(1+x^2)(1+xy)}\,dx\right)dy\\
\end{aligned}

Lets focus in the inner integral

\begin{aligned}
\int_0^1 \,\frac{x^2}{(1+x^2)(1+xy)}\,dx\\
&=\frac{1}{1+y^2}\int_0^1\left(\frac{yx-1}{1+x^2}+\frac{1}{1+yx} \right)dx\\
&=\frac{y}{1+y^2}\int_0^1 \frac{x}{1+x^2}dx-\frac{1}{1+y^2}\int_0^1 \frac{1}{1+x^2}dx+\frac{1}{1+y^2}\int_0^1\frac{1}{1+yx} dx\\
&=\frac{y}{2(1+y^2)}\ln(1+x^2)\Big|_0^1 -\frac{1}{1+y^2}\arctan(x)\Big|_0^1+\frac{1}{y(1+y^2)}\ln(1+yx)\Big|_0^1\\
&=\frac{\ln 2}{2}\frac{y}{1+y^2} -\frac{\pi}{4}\frac{1}{1+y^2}+\frac{\ln(1+y)}{y(1+y^2)}\\
\end{aligned}

Then

\begin{aligned}
K&=\frac{\ln 2}{2}\int_0^1\frac{y}{1+y^2}dy -\frac{\pi}{4}\int_0^1\frac{1}{1+y^2}dy+\int_0^1\frac{\ln(1+y)}{y(1+y^2)} dy\\
&=\frac{\ln 2}{4}\ln(1+y^2)\Big|_0^1-\frac{\pi}{4}\arctan(y)\Big|_0^1+\int_0^1\frac{\ln(1+y)}{y}dy-\int_0^1 \frac{y \ln(1+y)}{1+y^2}dy\\
&=\frac{\ln^2 2}{4}-\frac{\pi^2}{16}+\frac{\pi^2}{12}-K\\
&=\frac{\ln^2 2}{8}+\frac{\pi^2}{96}
\end{aligned}


Putting back the values of J and K we obtain

\begin{aligned}
\int_0^\infty \frac{\ln(1+e^{-x})}{1+e^{-2x}}dx&=\frac{\pi^2}{12}-\frac{\pi^2}{96}-\frac{\ln^2 2}{8}\\
&=\frac{7\pi^2}{96}-\frac{\ln^2 2}{8} \qquad \blacksquare\\
\end{aligned}

Comments

Popular posts from this blog

HARD INTEGRAL - PART II